

# WIRE IN ELECTRICAL CONSTRUCTION.

# JOHN A. ROEBLING'S SONS CO. TRENTON, N. J.

California egional acility

ibrary T. Cory harry TAO. produced at the works of John A. Roebling's Sons Company, at Trenton, N. J greatest of their kind in the world, and their annual output of wire and cables 25-27 Fremo IS A FACT THAT WHEN YOU WALK from New Vork to Brooklyn, you do so ov and Brooklyn Suspension Bridge, built by WHEN YOU TELEGRAPH from San Francisco to New York tinuous line of copper wire made WHEN YOU CABLE across the Atlantic Ocean by the Commt through copper wire made by Roebling. W OF WHEN YOU TALK from New York to Chicago by telephone, Hard-drawn Copper Wire made by Roebli THE FOREGOING THINGS ARE AMONG THE 32 South Water St., Cleveland, Ohio. Branch Offices and Warehouses; THE 171-173 Lake St., Chicago. 10 WONDERS 117-119 Liberty St., New York. EI other manufactory.









# WIRE

IN

# **Electrical Construction**

# JOHN A. ROEBLING'S SONS CO.

TRENTON, N. J.

117-119 Liberty street, New York.

32 South Water street, CLEVELAND. 171-173 Lake street, CHICAGO.

25-27 Fremont street, SAN FRANCISCO.

The Brandt (press, trenton. 1897. COPYRIGHTED, 1897, BY JOHN A. ROEBLING'S SONS CO.

All rights reserved.

....

TK 3305 R62W

# PREFATORY.

THE OBJECT of this book is to give in a convenient form the properties and dimensions of bare and insulated wires and cables used in electrical construction. No attempt has been made to describe the uses of wire in any of the applications of electricity. To go into this would require that the whole field of electrical engineering be covered.

It is believed that some of the matter is new. All of the tables have been very carefully computed, and are believed to be correct.

In nearly all cases the formulæ and constants used in computing tables are given, so that the user can determine at once the basis from which the table was calculated. A considerable amount of work has been done in testing samples to determine the proper constants. In many cases this has taken more time than the actual preparation of the tables.

It is hoped that the work will be acceptable to the users of electrical wires, and that some of the labor involved in the preparation of these tables will be saved to those using the book.

JOHN A. ROEBLING'S SONS Co.

TRENTON, N. J., May, 1897.

1#



# TABLE OF CONTENTS.

| MEASURES AND THEIR EQUIVALENTS : PAG              | E.  |
|---------------------------------------------------|-----|
| Measures of length                                | 1   |
| Measures of area                                  | 2   |
| Measures of volume                                | 3   |
| Measures of weight                                | 4   |
| Measures of work                                  | 5   |
| Measures of pressure                              | 6   |
| Decimal equivalents of parts of an inch           | 7   |
| Wire gauges in mils                               | 8   |
| Wire gauges in millimeters                        | 9   |
| Tables of specific gravities:                     |     |
| Metals                                            | 10  |
| Liquids                                           | 11  |
| Gases.                                            | 11  |
| Weights of substances                             | 12  |
| The comparison of thermometers:                   |     |
| Fahrenheit to Centigrade                          | 13  |
| Centigrade to Fahrenheit                          | 13  |
| Electrical units 14-                              | -15 |
| COPPER WIRE:                                      |     |
| Formulæ and explanations                          | -17 |
| Matthiessen's standard                            | 17  |
| Temperature coëfficients                          | 18  |
| Properties of copper wire-weights resistances etc | *** |
| English system :                                  |     |
| Brown & Sharpe gauge                              | 19  |
| Birmingham wire gauge                             | 20  |
| New British standard gauge                        | 21  |
| Metric system :                                   | **  |
| Brown & Sharpe gauge                              | 92  |
| Weights of all gauges                             | 23  |
| Hard-drawn conner wire                            | ~~  |
| British Post-office specifications                | 94  |
| Telephone specifications                          | 25  |
| Tensile strength of copper wire                   | 26  |
| Bi-metallie wire                                  | 27  |
| Strands of conner wire .                          | 41  |
| Formulæ and explanations                          | 28  |
| Diameters and properties                          | 29  |
| Diameters of wires in strands 30-                 | 31  |
| Numbers of wires in strands                       | 33  |

#### TABLE OF CONTENTS.

| IRON WIRE:                                                    | PAGE. |
|---------------------------------------------------------------|-------|
| Formulæ and explanations                                      | 34    |
| Properties of iron wire-weights, strength, resistances, etc., | 35    |
| Western Union Colograph company                               | 96    |
| Pritich Post office                                           | 07    |
| Strands:                                                      | 31    |
| Formulæ and explanations                                      | 38    |
| Properties of galvanized steel wire strands-weights           | 1     |
| and breaking strength                                         | . 38  |
| Supporting capacity of galvanized strands                     | 39    |
| CUBRENTS:                                                     |       |
| Fusing effects:                                               |       |
| Diameters of wires                                            | 40    |
| Current required                                              | 41    |
| Heating effects:                                              |       |
| References and explanations                                   | 42    |
| Carrying capacity:                                            |       |
| Insurance rules                                               | 43    |
| Insulated wires in mouldings                                  | 44    |
| Wires indoors                                                 | 45    |
| Wires outdoors                                                | 46    |
| SPANS:                                                        |       |
| Formulæ and explanations                                      | 47-49 |
| Specifications                                                | 48    |
| Strains at centers of spans                                   | 50-52 |
| Total lengths of wires in spans                               | 54-55 |
| Deflections in spans at various temperatures                  | 53    |
| DESCRIPTION OF THE ROEBLING ELECTRIC WIRES:                   |       |
| Weatherproof wires                                            | 56-57 |
| Rubber wires                                                  | 58-59 |
| Magnet wire                                                   | 60-61 |
| German silver wire                                            | 62    |
| Office wires                                                  | 63    |
| Cables:                                                       |       |
| Power cables                                                  | 64-65 |
| Telephone cables                                              | 66-67 |
| Telegraph cables                                              | 68-69 |
| Aerial cables                                                 | 70-71 |
| Submarine cables                                              | .72   |
| Rail-bonds                                                    | 73    |

vi

|                                                                                     |                                                           |                                       | MEASUR                                                                                                                  | ES OF LE                                     | NGTH.                                    |                                                             |                                                   |                                                   |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Names of units.                                                                     | Inches.                                                   | Feet.                                 | Yards.                                                                                                                  | Meters.                                      | Chains.                                  | Kilometers.                                                 | Miles.                                            | Knots.                                            |
| Inches.<br>Feet.<br>Yards.                                                          | 1.<br>12.<br>36.<br>*39.37                                | .083 33<br>1.<br>3.<br>*3.250 83      | .027 78<br>.333 33<br>1.<br>*1.093 611                                                                                  | .025 4<br>*.304 801<br>*.914 402<br>1.       | .001 26<br>.015 15<br>.045 45<br>.049 71 | .000 025<br>.000 305<br>.000 914<br>.001                    | .000 015 8<br>.000 189<br>.000 568<br>.000 621    | .000 013 7<br>.000 164 5<br>.000 493 4<br>.000 54 |
| Chains                                                                              | 792.<br>39 370.<br>63 360.<br>72 960.                     | 66.<br>8 280.83<br>5 290.<br>6 080.   | 22.<br>1 093.61<br>1 760.<br>2 026.66                                                                                   | 20.116 9<br>1 000.<br>1 609.35<br>1 858.19   | 1.<br>49.71<br>80.<br>92.112             | .020 116 9<br>1.<br>*1.609 35<br>1.853 19                   | .012 5<br>*.621 37<br>1.<br>1.151 5               | .010 855<br>.539 61<br>.868 42<br>1.              |
| Mil=.001 i<br>In these tab<br>1890 by the Unit<br>values in all the<br>In the metri | nch.<br>les the ec<br>ed States<br>tables are<br>c system | juivalents<br>Coast and<br>b marked b | of the met<br>Geodetic S<br>y an asteri<br>ng prefixes                                                                  | tric system<br>urvey, Office<br>isk (*). The | of weight<br>e of Stand<br>o other equ   | s and measu<br>ard Weights<br>iivalents are<br>ions and mul | res are tho<br>and Measu<br>calculated<br>tiples: | se given in<br>res. These<br>from these.          |
|                                                                                     |                                                           |                                       | $\begin{array}{l} \text{Milli} = r_{\text{d}} \\ \text{Centl} = r_{\text{d}} \\ \text{Deci} = r_{\text{d}} \end{array}$ | bu Deca<br>Hecto<br>Myria                    | 10<br>1000<br>1000<br>10000              |                                                             |                                                   |                                                   |
|                                                                                     |                                                           |                                       |                                                                                                                         |                                              |                                          |                                                             |                                                   |                                                   |

| tmes of units.                                             | Circular<br>mils.                        | Square<br>mils.                         | Square<br>millimeters.                     | Square<br>centimeters.              | Square<br>inches.                 | Square<br>feet.                | Square<br>yards.                    | Square<br>meters.                 |
|------------------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------|-----------------------------------|--------------------------------|-------------------------------------|-----------------------------------|
| ular mils<br>re mils<br>tre millimeters<br>tre centimeters | 1.273 2<br>1.273 2<br>1973.5<br>197 350. | .785 4<br>1.<br>1.<br>150.1<br>155 010. | .000 506 7<br>.000 645<br>1.<br>100.       | .000 006 4<br>.01<br>1.             |                                   | 440 100'                       | .000 12                             | .000 1                            |
| tre inches<br>tre feet<br>tre yards                        | 1 273 239.                               | 1 000 000.                              | 645.2<br>92 900.<br>836 100.<br>1 000 000. | *6.452<br>929.<br>8 361.<br>10 000. | 1.<br>144.<br>1 296.<br>1 550.016 | .006 94<br>1.<br>9.<br>*10.764 | .000 77<br>.11 111<br>.1.<br>*1.196 | .000 645<br>.092 9<br>*.836<br>1. |

| M   |
|-----|
| Б   |
| H   |
| 2   |
| -   |
| H   |
| 0   |
| 22  |
| 2   |
| Б   |
| δġ. |
| 5   |
| Ü   |
|     |

ei.

| Names of units.                     | Cubic<br>centimeters.              | Cubic<br>inches.              | Liters.                             | Gallons.                              | Cubic<br>feet.                              | Cubic<br>yards.                                  | Cubic<br>meters.                 |
|-------------------------------------|------------------------------------|-------------------------------|-------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------------|----------------------------------|
| Cubic centimeters<br>Cubic inches   | 1.<br>*16.387<br>1 000.<br>8 785.4 | *.061<br>1.<br>61.023<br>231. | .001<br>.016 387<br>1.<br>*3.785 44 | .000 264<br>.004 33<br>*.264 17<br>1. | .000 035<br>.000 578<br>.035 314<br>.133 68 | .000 001 3<br>.000 021 4<br>.001 308<br>.004 952 | .000 001<br>.000 016<br>.001 785 |
| Cubic feet                          | 28 315.<br>764 552.<br>1 000 000.  | 1 728.<br>46 656.<br>61 023.  | 28.315<br>764.55<br>1 000.          | 7.48<br>201.97<br>264.17              | 1.<br>27.<br>*35.314                        | .037 037<br>1.<br>*1.308                         | *.028 32<br>*.765<br>1.          |
| Fluid ounce = 2<br>Gallon = 128 flu | 29.57 cubic ce<br>tid ounces.      | entimeters.                   |                                     |                                       | Gallon = .<br>Quart = 2                     | 4 quarts.<br>pints.                              |                                  |

## JOHN A. ROEBLING'S SONS CO.

| Names of units.              | Grains.                             | Grams.                                   | Ounces<br>avoirdupois.             | Pounds troy.                         | Pounds<br>avoirdupois.                    | Kilograms.                             |
|------------------------------|-------------------------------------|------------------------------------------|------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------|
| ains                         | 1.<br>*15.432<br>437.5<br>5 760.    | .064 798 9<br>.064 798 9<br>1.<br>373.24 | .002 28<br>.035 27<br>1.<br>13.166 | .000 174<br>.002 68<br>.075 95<br>1. | .000 143<br>.002 205<br>.062 5<br>.822 86 | .000 064<br>.001<br>.028 35<br>.373 24 |
| unds avoirdupois<br>llograms | 7 000.<br>*15 432.36<br>15 680 000. | 458.59<br>1 000.<br>1 016 041.6          | 16.<br>35.274<br>35 840.           | 1.215 8<br>2.679 2<br>2 722.2        | 1.<br>*2.204 62<br>2 240.                 | *.458 59<br>1.<br>1 016.04             |

| WORK.           |  |
|-----------------|--|
| OF              |  |
| <b>TEASURES</b> |  |

| Names of units.                                                  | Ergs.                                         | Gram-<br>degree<br>Centigrade. | Pound-<br>degree<br>Fahrenheit.  | Watt-<br>second.           | Kilogram-<br>meter.            | Foot-<br>pound.             | Horse-<br>power-<br>second.    |
|------------------------------------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------|----------------------------|--------------------------------|-----------------------------|--------------------------------|
| Gram-degree Centigrade<br>Pound-degree Fahrenheit<br>Watt-second | 41 549 500.<br>10 470 300 000.<br>10 000 000. | 1.<br>252.11<br>.240 7         | .003 968 3<br>1.<br>.000 955 1   | 4.154 95<br>1 047.03<br>1. | .423 54<br>106.731<br>.101 937 | 8.063 5<br>772.<br>.737 324 | .005 57<br>1.403<br>.001 340 6 |
| Kilogram-meter .<br>Foot-pound                                   | 98 100 000.<br>13 562 600.                    | 2.361<br>.326 4<br>179.5       | .009 369<br>.001 295 3<br>.712 4 | 9.81<br>1.856 26<br>745.94 | 1.<br>.138 25<br>76.039        | 7.233 14<br>1.<br>550.      | .013 151<br>.001 818 18<br>1.  |

Calorie = gram-degree Centigrade. B. T. U.= British thermal unit = pound-degree Fahrenheit. wall JUF UNE SECOND.

JOHN A. ROEBLING'S SONS CO.

| Names of units.                                          | Atmospheres.                          | Pounds on<br>square<br>inch.    | Inches<br>of<br>mercury<br>at 32° F. | Feet of<br>water at<br>60° F.  | Millimeters<br>of<br>mercury<br>at 32° F. | Pounds<br>on<br>square foot.       | Kilograms<br>on square<br>meter.         |
|----------------------------------------------------------|---------------------------------------|---------------------------------|--------------------------------------|--------------------------------|-------------------------------------------|------------------------------------|------------------------------------------|
| thmospheres                                              | 1.<br>.068 03<br>.033 42<br>.029 47   | 14.7<br>1.<br>.491 8<br>.433 2  | 29.922<br>2.036<br>1.<br>.881 8      | 33.94<br>2.309<br>1.134<br>1.  | 760.<br>51.7<br>25.398<br>22.399          | 2 116.<br>143.946<br>70.7<br>62.35 | 10 333.<br>702.925<br>345.331<br>304.565 |
| Millimeters of mercury at 32° F<br>Pounds on square foot | .001 316<br>.000 472 6<br>.000 096 77 | .019 34<br>.006 947<br>.001 423 | .089 37<br>.014 14<br>.002 895       | .044 64<br>.016 03<br>.003 283 | 1<br>.359 2<br>.073 55                    | 2.784<br>1.<br>.204 8              | 13.596<br>4.883<br>1.                    |

1 kilogram per square millimeter = 1423 pounds per square inch.

1 pound per square inch = .000703 kilograms per square millimeter.

JOHN A. ROEBLING'S SONS CO.

## DECIMAL EQUIVALENTS OF PARTS OF AN INCH.

| 16ths. | 32ds.     | 64ths.               | Mils.                                                            | 16ths. | 32ds.    | 64ths.               | Mils.                                 |
|--------|-----------|----------------------|------------------------------------------------------------------|--------|----------|----------------------|---------------------------------------|
|        | 1         | 1 ·<br>2<br>3        | 15.625<br>31.25<br>46.875                                        |        | 17       | 33<br>34<br>35       | 515.625<br>531.25<br>546.875          |
| 1      | 2         | 4                    | 62.5                                                             | 9      | 18       | 36                   | 562.5                                 |
|        | 3         | 5<br>6<br>7          | 78.125<br>93.75<br>109.875                                       |        | 19       | 37<br>38<br>39       | 578.125<br>593.75<br>609.375          |
| 2      | 4         | 8                    | 125.                                                             | 10     | 20       | 40                   | 625.                                  |
| 3      | 5         | 9<br>10<br>11<br>12  | $\begin{array}{r} 140.625\\ 156.25\\ 171.875\\ 187.5\end{array}$ | 11     | 21<br>22 | 41<br>42<br>43<br>44 | 640.625<br>656.25<br>671.875<br>687.5 |
| 4      | 7 8       | 13<br>14<br>15<br>16 | 203.125<br>218.75<br>234.375<br>250.                             | 12     | 23<br>24 | 45<br>46<br>47<br>48 | 703.125<br>718.75<br>734.375<br>750.  |
| 5      | 9 -<br>10 | 17<br>18<br>19<br>20 | $\begin{array}{r} 265.625\\ 281.25\\ 296.875\\ 312.5\end{array}$ | 13     | 25<br>26 | 49<br>50<br>51<br>52 | 765.625<br>781.25<br>796.875<br>812.5 |
| 6      | 11<br>12  | 21<br>22<br>23<br>24 | 328.125<br>343.75<br>359.375<br>375.                             | 14     | 27<br>28 | 53<br>54<br>55<br>56 | 828.125<br>843.75<br>859.375<br>875.  |
| 7      | 13<br>14  | 25<br>26<br>27<br>28 | 390.625<br>406.25<br>421.875<br>437.5                            | 15     | 29<br>30 | 57<br>58<br>59<br>60 | 890.625<br>906.25<br>921.875<br>937.5 |
|        | 15        | 29<br>30<br>31       | 453.125<br>468.75<br>484.375                                     |        | 31       | 61<br>62<br>63       | 953.125<br>968.75<br>984.375          |
| 8      | 16        | 32                   | 500.                                                             | 16     | 32       | 64                   | 1 000.                                |

## WIRE GAUGES IN MILS.

| Numbers.                                       | Roebling.                            | Brown<br>&<br>Sharpe.                                                                                            | Birmingham<br>or<br>Stubs.      | New British<br>standard.             |
|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|
| 000 000<br>00 000<br>0 000<br>000<br>000<br>00 | 460.<br>430.<br>393.<br>362.<br>331. | 460.<br>409.6<br>364.8                                                                                           | 454.<br>425.<br>380.            | 464.<br>432.<br>400.<br>872.<br>348. |
| 0                                              | 307.                                 | 324.9                                                                                                            | 340.                            | 324.                                 |
| 1                                              | 283.                                 | 289.3                                                                                                            | 800.                            | 300.                                 |
| 2                                              | 263.                                 | 257.6                                                                                                            | 284.                            | 276.                                 |
| 3                                              | 244.                                 | 229.4                                                                                                            | 259.                            | 252.                                 |
| · 4                                            | 225.                                 | 204.3                                                                                                            | 238.                            | 232.                                 |
| 5                                              | 207.                                 | $181.9 \\ 162. \\ 144.3 \\ 128.5 \\ 114.4$                                                                       | 220.                            | 212.                                 |
| 6                                              | 192.                                 |                                                                                                                  | 203.                            | 192.                                 |
| 7                                              | 177.                                 |                                                                                                                  | 180.                            | 176.                                 |
| 8                                              | 162.                                 |                                                                                                                  | 165.                            | 160.                                 |
| 9                                              | 148.                                 |                                                                                                                  | 148.                            | 144.                                 |
| 10                                             | 135.                                 | $     \begin{array}{r}       101.9 \\       90.74 \\       80.81 \\       71.96 \\       64.08     \end{array} $ | 134.                            | 128.                                 |
| 11                                             | 120.                                 |                                                                                                                  | 120.                            | 116.                                 |
| 12                                             | 105.                                 |                                                                                                                  | 109.                            | 104.                                 |
| 13                                             | 92.                                  |                                                                                                                  | 95.                             | 92.                                  |
| 14                                             | 80.                                  |                                                                                                                  | 83.                             | 80.                                  |
| 15                                             | · 72.                                | 57.07                                                                                                            | 72.                             | 72.                                  |
| 16                                             | 63.                                  | 50.82                                                                                                            | 65.                             | 64.                                  |
| 17                                             | 54.                                  | 45.26                                                                                                            | 58.                             | 56.                                  |
| 18                                             | 47.                                  | 40.3                                                                                                             | 49.                             | 48.                                  |
| 19                                             | 41.                                  | 35.89                                                                                                            | 42.                             | 40.                                  |
| 20                                             | 35.                                  | 81.96                                                                                                            | 85.                             | 36.                                  |
| 21                                             | 32.                                  | 28.46                                                                                                            | 82.                             | 32.                                  |
| 22                                             | 28.                                  | 25.35                                                                                                            | 28.                             | 28.                                  |
| 23                                             | 25.                                  | 22.57                                                                                                            | 25.                             | 24.                                  |
| 24                                             | 23.                                  | 20.1                                                                                                             | 22.                             | 22.                                  |
| 25<br>26<br>27<br>28<br>29                     | 20.<br>18.<br>17.<br>16.<br>15.      | $17.9 \\ 15.94 \\ 14.2 \\ 12.64 \\ 11.26$                                                                        | 20.<br>18.<br>16.<br>14.<br>13. | $20. \\18. \\16.4 \\14.8 \\13.6$     |
| 30                                             | 14.                                  | 10.03                                                                                                            | 12,                             | 12.4                                 |
| 31                                             | 13.5                                 | 8.93                                                                                                             | 10,                             | 11.6                                 |
| 32                                             | 13.                                  | 7.95                                                                                                             | 9,                              | 10.8                                 |
| 83                                             | 11.                                  | 7.08                                                                                                             | 8,                              | 10.                                  |
| 34                                             | 10.                                  | 6.3                                                                                                              | 7,                              | 9.2                                  |
| 35                                             | 9.5                                  | 5.62                                                                                                             | 5.                              | 8.4                                  |
| 36                                             | 9.                                   | 5.                                                                                                               | 4.                              | 7.6                                  |

# WIRE GAUGES IN MILLIMETERS.

| Numbers.                                          | Roebling.                                   | Brown<br>&<br>Sharpe.                                                         | Birmingham<br>or<br>Stubs.    | New British<br>standard.                                                 |
|---------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
| 000 000<br>00 000<br>0 000<br>0 000<br>000<br>000 | 11.683<br>10.921<br>9.982<br>9.195<br>8.407 | <br>11.683<br>10.404<br>9.266                                                 | <br>11.531<br>10.794<br>9.652 | 11.785<br>10.972<br>10.16<br>9.448<br>8.839                              |
| 0                                                 | 7.798                                       | 8.251                                                                         | 8.636                         | 8.229                                                                    |
| 1                                                 | 7.188                                       | 7.348                                                                         | 7.62                          | 7.62                                                                     |
| 2                                                 | 6.68                                        | 6.544                                                                         | 7.213                         | 7.01                                                                     |
| 3                                                 | 6.198                                       | 5.827                                                                         | 6.579                         | 6.401                                                                    |
| 4                                                 | 5.715                                       | 5.19                                                                          | 6.045                         | 5.893                                                                    |
| 5                                                 | 5.257                                       | $\begin{array}{r} 4.621 \\ 4.115 \\ 3.665 \\ 3.263 \\ 2.906 \end{array}$      | 5.588                         | 5.385                                                                    |
| 6                                                 | 4.877                                       |                                                                               | 5.156                         | 4.877                                                                    |
| 7                                                 | 4.496                                       |                                                                               | 4.572                         | 4.47                                                                     |
| 8                                                 | 4.115                                       |                                                                               | 4.191                         | 4.064                                                                    |
| 9                                                 | 8.759                                       |                                                                               | 8.759                         | 3.657                                                                    |
| 10                                                | 3.429                                       | 2.588                                                                         | 3.404                         | $\begin{array}{r} 3.251 \\ 2.947 \\ 2.641 \\ 2.837 \\ 2.032 \end{array}$ |
| 11                                                | 3.048                                       | 2.305                                                                         | 3.048                         |                                                                          |
| 12                                                | 2.667                                       | 2.052                                                                         | 2.768                         |                                                                          |
| 13                                                | 2.337                                       | 1.828                                                                         | 2.413                         |                                                                          |
| 14                                                | 2.032                                       | 1.628                                                                         | 2.108                         |                                                                          |
| - 15                                              | 1.829                                       | 1.449                                                                         | 1.829                         | 1.829                                                                    |
| 16                                                | 1.6                                         | 1.291                                                                         | • 1.651                       | 1.626                                                                    |
| 17                                                | 1.872                                       | 1.15                                                                          | 1.473                         | 1.422                                                                    |
| 18                                                | 1.194                                       | 1.024                                                                         | 1.245                         | 1.219                                                                    |
| 19                                                | 1.041                                       | .911 6                                                                        | 1.067                         | 1.016                                                                    |
| 20                                                | .889                                        | .811 8                                                                        | .889                          | .914 4                                                                   |
| 21                                                | .812 8                                      | .722 9                                                                        | .812 8                        | .812 8                                                                   |
| 22                                                | .711 2                                      | .643 8                                                                        | .711 2                        | .711 2                                                                   |
| 23                                                | .635                                        | .573 3                                                                        | .635                          | .609 6                                                                   |
| 24                                                | .584 2                                      | .510 5                                                                        | .558 8                        | .558 8                                                                   |
| 25                                                | .508                                        | .454 6                                                                        | .508                          | .508                                                                     |
| 26                                                | .457 2                                      | .404 9                                                                        | .457 2                        | .457 2                                                                   |
| 27                                                | .431 8                                      | .360 5                                                                        | .406 4                        | .416 6                                                                   |
| 28                                                | .406 4                                      | .321 1                                                                        | .355 6                        | .375 9                                                                   |
| 29                                                | .381                                        | .285 9                                                                        | .330 2                        | .345 4                                                                   |
| 30                                                | .355 6                                      | $\begin{array}{r} .254\ 5\\ .226\ 7\\ .201\ 9\\ .179\ 8\\ .160\ 1\end{array}$ | .304 8                        | .315                                                                     |
| 31                                                | .342 9                                      |                                                                               | .254                          | .294 6                                                                   |
| 32                                                | .830 2                                      |                                                                               | .228 6                        | .274 8                                                                   |
| 33                                                | .279 4                                      |                                                                               | .203 2                        | .254                                                                     |
| 34                                                | .254                                        |                                                                               | .177 8                        | .233 7                                                                   |
| 35                                                | .241 3                                      | .142 6                                                                        | .127                          | .213 4                                                                   |
| 36                                                | .228 6                                      | .127                                                                          | .101 6                        | .193                                                                     |

## TABLES OF SPECIFIC GRAVITIES.

Metals.

| Names of metals.                                    | Specific<br>gravity.                                                                                           | Weights<br>per cubic<br>foot.                                                | Specific<br>heat.                                                          | Melting<br>point in<br>degrees<br>Fahr-<br>enheit.                          |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Aluminum, cast<br>hammered.<br>Antimony<br>Barium   | 2.5 <sup>1</sup><br>2.67 <sup>1</sup><br>6.702 <sup>3</sup><br>5.763 <sup>3</sup><br>4. <sup>3</sup>           | $156.06 \\ 166.67 \\ 418.37 \\ 359.76 \\ 249.7$                              | .214 3<br>.050 8<br>.081 4                                                 | 810.<br>365.                                                                |
| Bismuth<br>Cadmium<br>Calcium<br>Chromium<br>Cobalt | 9.822 <sup>2</sup><br>8.604 <sup>5</sup><br>1.566 <sup>4</sup><br>7.3 <sup>6</sup><br>8.6                      | 613.14<br>537.1<br>97.76<br>455.7<br>536.86                                  | .030 8<br>.056 7<br>                                                       | 497.<br>500.                                                                |
| Copper<br>" rolled<br>" cast<br>" drawn<br>hammered | 8.895 <sup>7</sup><br>8.878 <sup>2</sup><br>8.788 <sup>2</sup><br>8.946 3 <sup>8</sup><br>8.958 7 <sup>8</sup> | 555.27<br>554.21<br>548.59<br>558.47<br>559.25                               | .095 1                                                                     | 1 996.                                                                      |
| " pressed<br>" electrolytic<br>Gold<br>" wrought    | 8.931°<br>8.914°<br>19.258°<br>7.483°<br>7.79                                                                  | $\begin{array}{r} 557\ 52\\ 556.46\\ 1\ 202.18\\ 467.18\\ 486.29\end{array}$ | <br>.032 4<br>.13<br>.113                                                  | 2 016.<br>2 786.<br>3 286.                                                  |
| Steel<br>Lead<br>Magnesium<br>Manganese<br>Mercury  | 7.85<br>11.445 <sup>10</sup><br>2.24 <sup>11</sup><br>6.9 <sup>12</sup><br>13.568 <sup>13</sup>                | 490.03<br>714.45<br>139.83<br>430.73<br>846.98                               | .116<br>.031 4<br>.249 9<br>.114<br>.031 9                                 | 3 286.<br>612.<br>3 000.<br>38.                                             |
| Nickel<br>Platinum<br>Potassium<br>Silver<br>Sodium | 7.832<br>20.3 <sup>2</sup><br>.865 <sup>14</sup><br>10.522 <sup>11</sup><br>.972 <sup>14</sup>                 | $\begin{array}{r} 488.91 \\ 1\ 267.22 \\ 54. \\ 656.84 \\ 60.68 \end{array}$ | $\begin{array}{r} .109\ 1\\ .032\ 4\\ .169\ 6\\ .057\\ .293\ 4\end{array}$ | $\begin{array}{c} 280 \ 0.\\ 328 \ 6.\\ 136.\\ 1 \ 873.\\ 194. \end{array}$ |
| Strontium<br>Tin<br>Zinc                            | 2.504 <sup>4</sup><br>7.291 <sup>2</sup><br>6.861 <sup>2</sup>                                                 | 156.31<br>455.14<br>428.29                                                   | .056 2<br>.095 5                                                           | 442.<br>773.                                                                |

1. Wöhler.

- 2. Brisson.
- 3. Clarke.
- 4. Matthiessen.
- 5. Stromeyer.
- 6. Bunsen.

15

7. Hatchett.

- 8. Brezenius.
- 9. Marchand & Scheerer.
- 10. Musschenbroek.
- 11. Playfair & Joule.
- 12. Bergman. 13. Watts' Dictionary.
- 14. Gay-Lussac & Thenard.

# TABLES OF SPECIFIC GRAVITIES.-(Cont.)

Liquids.

| Names of liquids. | Specific gravity. | Temperatures. |
|-------------------|-------------------|---------------|
| Alcohol           | 0.815 71          | At 50° F.     |
| Benzine           | 0.883             | At 59° F.     |
| Chloroform        | 1.491             | At 62.6° F.   |
| Carbon bisulphide | 1.293 1           | At 32° F.     |
| Ether             | 0.720 4           | At 60.8° F.   |
| Glycerine         | 1.263 6           | At 59° F.     |
| Hydrochloric acid | 1.27              |               |
| Mercury           | 13.596            | At 32° F.     |
| Nitric acid       | 1.552             | At 59° F.     |
| Oil of turpentine | 0.855 to 0.864    | At 68° F.     |
| Linseed oil       | 0.94              |               |
| Olive oil         | 0.915             |               |
| Sulphuric acid    | 1.854             | At 32° F.     |

#### Gases.

| Names of gases.                              | At 0° C. and 760<br>mm. pressure<br>compared to water. | At 0° C. and 760<br>mm. pressure<br>compared to air. |
|----------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Air                                          | 0.001 292 8                                            | 1.                                                   |
| Oxygen                                       | 0.001 429 3                                            | 1.105 63                                             |
| Nitrogen                                     | 0.001 255 7                                            | 0.971 37                                             |
| Hvdrogen                                     | 0.000 089 54                                           | 0.069 26                                             |
| Carbonic dioxide                             | 0.001 976 7                                            | 1.529 1                                              |
| Mixed gases from electro-<br>lysis of water} | 0.000 536 1                                            | 0.414 72                                             |
| Aqueous vapor                                | *******                                                | 0.623                                                |

.

### WEIGHTS OF SUBSTANCES.

| Names of substances.                                                                                                     | Average weights<br>per cubic foot.<br>Pounds.                             |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Asphaltum<br>Brick, common, hard.<br>Brickwork, pressed brick<br>'' ordinary<br>Coal, anthracite, solid, of Pennsylvania | 87.<br>125.<br>140.<br>112.<br>93.                                        |
| " bituminous, solid<br>bituminous, solid<br>broken; loose<br>Coke, loose, of good coal<br>Cork                           | 54.<br>84.<br>49.<br>62.<br>12.4                                          |
| Barth, common loam, dry, loose<br>" moderately rammed<br>Gneiss, common<br>Granite                                       | 76.<br>95.<br>108.<br>168.<br>170.                                        |
| Glass, Crown                                                                                                             | $ \begin{array}{r} 168.5 \\ 218.3 \\ 57.2 \\ 75. \\ 165. \\ \end{array} $ |
| Mortar, bardened<br>Mud, dry, close<br>Quartz                                                                            | 103.<br>80 to 1<br>165.4<br>131.<br>58.7                                  |
| Wood, ebony                                                                                                              | 74.9<br>43.7<br>46.8<br>31.2<br>62.418                                    |
| " " " " " " " " " " " " " " " " " " "                                                                                    | 62.425<br>62.409<br>62.367<br>62.302<br>62.218                            |
| " " 90° F                                                                                                                | 62.119                                                                    |

## THE COMPARISON OF THERMOMETERS.

Fahrenheit to Centigrade.

 $(t^{\circ} F. - 32) \times$  = Degrees C.

| Fahrenheit.          | Centigrade.                  | Fahrenheit.          | Centigrade.                  | Fahrenheit.          | Centigrade.                  | Fahrenheit.          | Centigrade.                  | Fahrenheit.          | Centigrade.                 |
|----------------------|------------------------------|----------------------|------------------------------|----------------------|------------------------------|----------------------|------------------------------|----------------------|-----------------------------|
| 50<br>51<br>52<br>53 | 10.<br>10.6<br>11.1<br>11.7  | 61<br>62<br>63<br>64 | 16.1<br>16.7<br>17.2<br>17.8 | 72<br>73<br>74<br>75 | 22.2<br>22.8<br>23.3<br>23.9 | 83<br>84<br>85<br>86 | 28.3<br>28.9<br>29.4<br>30.  | 94<br>95<br>96<br>97 | 34.4<br>35.<br>35.6<br>36.1 |
| 54<br>55<br>56<br>57 | 12.2<br>12.8<br>13.3<br>13.9 | 65<br>66<br>67<br>68 | 18.3<br>18.9<br>19.4<br>20.  | 76<br>77<br>78<br>79 | 24.4<br>25.<br>25.6<br>26.1  | 87<br>88<br>89<br>90 | 30.6<br>31.1<br>31.7<br>32.2 | 98<br>99<br>100      | 36.7<br>37.2<br>37.8        |
| 58<br>59<br>60       | 14.4<br>15.<br>15.6          | 69<br>70<br>71       | 20.6<br>21.1<br>21.7         | 80<br>81<br>82       | 26.7<br>27.2<br>27.8         | 91<br>92<br>93       | 32.8<br>33.3<br>33.9         |                      |                             |

#### Centigrade to Fahrenheit.

Fahrenheit Fahrenheit. Fahrenheit Centigrade. Centigrade. Jentigrade. Centigrade. Fahrenheit 64.4 26 27 28 78.8 93.2 10 50. 18 19 34 35 36 11 66.2 95. 51.8 80.6  $\hat{1}\hat{2}$ 53.6 20 68. 69.8 82.4 84.2 96.8 13 55.4 21 29 37 98.6 14 15 57.2 22 71.6 30 86. 38 100.4 23 59. 60.8  $73.4 \\ 75.2$ 31 87.8 39 102.2 16 24 25 32 89.6 40 104. 62.6 77. 33 91.4

 $\frac{1}{2}$  to C + 32 = Degrees F.

#### ELECTRICAL UNITS.

#### Final and official recommendation of the Chamber of Delegates of the International Electrical Congress. held at Chicago, 1893.

Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the international ohm, which is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.452 1 grams in mass, of a constant cross-sectional area and of the length of 106.3 centimeters.

As a unit of current, the international ampere, which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,<sup>1</sup> deposits silver at the rate of 0.001 118 of a gram per second.

with scaling wax. The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water. The resistance of the voltameter changes somewhat as the current

<sup>1.</sup> In the following specification the term silver voltameter means the arrangement of apparatus by means of which an electric current is passed horough a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the errent, or, it that merent has been kept constitution of nitrate to construct the silver of a single silver and the errent of a silver provide the silver of the errent of a silver size of the errent of a silver rotage the transforments should be adopted : The kathode on which the silver is to be deposited should take the form of a plathnum howin not less than 10 centimeters in diameters and from 4 to 5 centimeters in thickness. This is supported horizontally in the liquid near the top of the solution by a plathnum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is an offormed on the anote from failing outo the kathode, the anote should be wrapped around with pure filter paper, secured at the back with sedime water. 1. In the following specification the term silver voltameter means

As a unit of electro-motive force, the *international volt*, which is the electro-motive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by  $\frac{1939}{1932}$  of the electro-motive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C., and prepared in the manner described in the accompanying specification.<sup>2</sup>

As a unit of quantity, the *international coulomb*, which is the quantity of electricity transferred by a current of one international ampere in one second.

As a unit of capacity, the *international farad*, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.

As a unit of work, the *joule*, which is equal to  $10^7$  units of work in the C. G. S. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.

As a unit of power, the *watt*, which is equal to  $10^{7}$  units of power in the C. G. S. system, and which is represented sufficiently well for practical use by work done at the rate of one joule per second.

As the unit of induction, the *henry*, which is the induction in a circuit when the electro-motive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second.

passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms.

 A committee, consisting of Messrs. Helmholtz, Ayrton and Carhart, was appointed to prepare specifications for the Clark's cell. Their report has not yet been received.

# COPPER WIRE.

IN THE following tables of copper wire the value of the mil-foot is taken as the standard.

The temperature coëfficient is interpolated for 60° F. and 75° F. from the values given in the second table.

In the table for B. & S. G., the actual sizes to which wire is drawn, are used.

In many cases the nearest whole number of pounds is taken when the variation is less than that found in actual weights of drawn wire.

In computing the weights, the specific gravity of copper is taken at 8.89, water being at its greatest density 62.425 pounds per cubic foot.

International ohms are used, unless the kind of unit is specifically stated.

The following formulæ were used :

Resistance per 1 000 feet at 60° F.  $=\frac{10180.696}{d^2}$ Resistance per 1 000 feet at 75° F.  $=\frac{10607.4}{d^3}$ . Weight per 1 000 feet = .003 027 × d<sup>3</sup>. Weight per mlle = .015 983 × d<sup>3</sup>.

The following data and formulæ may be useful:

One B. A. unit = .988 9 legal ohms = .986 6 International ohms. One legal ohm = 1.011 22 B. A. units = .997 67 International ohms. One International ohm = 1.013 58 B. A. units = 1.002 33 legal ohms. One cuble foot of copper weighs 555 pounds. One cuble inch of copper weighs 521 2 pounds.

Resistance per 1 000 feet at  $60^{\circ}$  F. =  $\frac{30.815}{\text{weight per 1 000 feet}}$ . Resistance per 1 000 feet at  $75^{\circ}$  F. =  $\frac{31.804}{\text{weight per 1 000 feet}}$ .

If a copper wire of length l, diameter d, and weight w, has a resistance R at temperature t, then its conductivity

by diameter is given by the first formula, and by weight by the second.

$$C = \frac{a \, i \, k}{d^2 \, R}, \qquad R \, t^o = \frac{a \, i \, k}{d^3},$$
$$C = \frac{b \, i^3 \, c}{w \, R}, \qquad R \, t^o = \frac{b \, i^3 \, c}{w},$$

Here, a is the resistance of a mil-foot in same units as R, k is the temperature coöfficient for  $t^{\circ}$  Centigrade, and b is the resistance of one meter-gram at temperature  $t^{\circ}$  and in same units as R.

When 1 is in meters and w in grams, c = 1. When 1 is in feet and w in grams, c = .092 9. When 1 is in feet and w in pounds, c = .000 204 8.

 $Mile-ohm = weight per mile \times resistance per mile.$ 

Mile-ohm at  $60^\circ = 859$ , International ohms. Mile-ohm at  $60^\circ = 868.9$ , B. A. units. Mile-ohm at  $60^\circ = 861$ , Legal ohms.

The following tables are taken from the report of the Standard Wiring Table Committee, published in the report of the meeting of the American Institute of Electrical Engineers, held January 17, 1893:

#### MATTHIESSEN'S STANDARD.

| Equivalent length of a                                    | B. A.<br>units.      | Legal ohms.           | Interna-<br>tional ohms. |  |
|-----------------------------------------------------------|----------------------|-----------------------|--------------------------|--|
| mercury column.                                           | 104.8 cms. 106.0 cm  |                       | 106.3 cms.               |  |
| Resistance at 0° C. of Mat-                               |                      |                       |                          |  |
| Meter-gram soft copper                                    | .143 65              | .142 06               | .141 73                  |  |
| per                                                       | .020 57              | .020 35               | .020 8                   |  |
| Cubic centimeter soft cop-<br>per<br>Mil-foot soft copper | .000 001 616<br>9.72 | .000 001 598<br>9.612 | .000 001 594<br>9.59     |  |

(Recommended by the Committee).

## TEMPERATURE COËFFICIENTS.

#### Table of temperature variations in the resistance of pure soft copper according to Matthiessen's standard and formulæ.

| ure in<br>Centi-              | ure<br>nt of<br>ce.                                                                                    | d                                                                                                         | Matthiesser                                                                                       | n meter-gra<br>resistance.                                                                        | m standard                                                                               |
|-------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Temperat<br>degrees<br>grade. | Temperat<br>coéfficie<br>resistan                                                                      | Logarithn                                                                                                 | B. A.<br>units.                                                                                   | Legal<br>ohms.                                                                                    | Interna-<br>tionai<br>ohms.                                                              |
| 0<br>1<br>2<br>3<br>4         | 1.<br>1.003 876<br>1.007 764<br>1.011 66<br>1.015 58                                                   | 0.<br>0.001 680 1<br>0.003 358 8<br>0.005 036 2<br>0.006 712 1                                            | $\begin{array}{c} 0.143 \ 65 \\ 0.144 \ 21 \\ 0.144 \ 77 \\ 0.145 \ 33 \\ 0.145 \ 89 \end{array}$ | $\begin{array}{c} 0.142\ 06\\ 0.142\ 61\\ 0.143\ 17\\ 0.143\ 72\\ 0.144\ 27\end{array}$           | 0.141 73<br>0.142 28<br>0.142 83<br>0.143 38<br>0.143 94                                 |
| 5<br>6<br>7<br>8<br>9         | $\begin{array}{r} 1.019\ 5\\ 1.028\ 43\\ 1.027\ 38\\ 1.031\ 34\\ 1.035\ 31 \end{array}$                | 0.008 386 4<br>0.010 059 3<br>0.011 730 7<br>0.013 400 3<br>0.015 068 3                                   | $\begin{array}{r} 0.146\ 45\\ 0.147\ 02\\ 0.147\ 59\\ 0.148\ 15\\ 0.148\ 73\\ \end{array}$        | 0.144 83<br>0.145 39<br>0.145 95<br>0.146 51<br>0.147 08                                          | 0.144 49<br>0.145 05<br>0.145 61<br>0.146 17<br>0.146 73                                 |
| 10<br>11<br>12<br>13<br>14    | $\begin{array}{r} 1.039\ 29\\ 1.043\ 28\\ 1.047\ 28\\ 1.051\ 29\\ 1.055\ 32 \end{array}$               | $\begin{array}{c} 0.016\ 734\ 6\\ 0.018\ 399\ 3\\ 0.020\ 062\ 1\\ 0.021\ 723\\ 0.023\ 382\ 1 \end{array}$ | 0.149 3<br>0 149 87<br>0.150 45<br>0.151 02<br>0.151 6                                            | $\begin{array}{c} 0.147 \ 64 \\ 0.148 \ 21 \\ 0.148 \ 78 \\ 0.149 \ 35 \\ 0.149 \ 92 \end{array}$ | 0.147 3<br>0.147 86<br>0.148 43<br>0.149<br>0.149 57                                     |
| 15<br>16<br>17<br>18<br>19    | $\begin{array}{r} 1.059\ 35\\ 1.063\ 39\\ 1.067\ 45\\ 1.071\ 52\\ 1.075\ 59 \end{array}$               | 0.025 039<br>0.026 694<br>0.028 348<br>0.029 999<br>0.803 164                                             | $\begin{array}{c} 0.152\ 18\\ 0.152\ 77\\ 0.153\ 34\\ 0.153\ 93\\ 0.154\ 51\end{array}$           | 0.150 49<br>0.151 07<br>0.151 64<br>0.152 22<br>0.152 8                                           | $\begin{array}{c} 0.150\ 14\\ 0.150\ 71\\ 0.151\ 29\\ 0.151\ 86\\ 0.152\ 44 \end{array}$ |
| 20<br>21<br>22<br>23<br>24    | 1.079 68<br>1.083 78<br>1.087 88<br>1.092<br>1.096 12                                                  | 0.033 294<br>0.034 939<br>0.036 581<br>0.038 222<br>0.039 859                                             | 0.155 1<br>0.155 69<br>0.156 28<br>0.156 87<br>0.157 46                                           | $\begin{array}{c} 0.153 \ 38 \\ 0.153 \ 96 \\ 0.154 \ 55 \\ 0.155 \ 13 \\ 0.155 \ 72 \end{array}$ | $\begin{array}{c} 0.153\ 02\\ 0.153\ 6\\ 0.154\ 18\\ 0.154\ 77\\ 0.155\ 35\end{array}$   |
| 25<br>26<br>27<br>28<br>29    | * 1.100 26<br>1.104 4<br>1.108 56<br>1.112 72<br>1.116 89                                              | $\begin{array}{c} 0.041 \ 494 \\ 0.043 \ 127 \\ 0.044 \ 758 \\ 0.046 \ 385 \\ 0.048 \ 011 \end{array}$    | $\begin{array}{r} 0.158\ 06\\ 0.158\ 65\\ 0.159\ 25\\ 0.159\ 85\\ 0.160\ 44 \end{array}$          | 0.156 31<br>0.156 89<br>0.157 48<br>0.158 08<br>0.158 67                                          | 0.155 94<br>0.156 53<br>0.157 11<br>0.157 7<br>0.158 3                                   |
| 30<br>40<br>50<br>60<br>70    | $\begin{array}{c cccc} 1.121 & 07 \\ 1.163 & 32 \\ 1.206 & 25 \\ 1.249 & 65 \\ 1.293 & 27 \end{array}$ | 0.049 633<br>0.065 699<br>0.081 436<br>0.096 787<br>0.111 687                                             | 0.161 05<br>0.167 11<br>0.173 28<br>0.179 52<br>0.185 78                                          | 0.159 26<br>0.165 26<br>0.171 36<br>0.177 53<br>0.183 72                                          | 0.158 89<br>0.164 88<br>0.170 95<br>0.177 11<br>0.183 29                                 |
| 80<br>90<br>100               | $\begin{array}{c} 1.336\ 81\\ 1.379\ 95\\ 1\ 422\ 31 \end{array}$                                      | 0.126 069<br>0.139 863<br>0.152 995                                                                       | v.192 04<br>0.198 23<br>0.204 32                                                                  | 0.189 91<br>0.196 04<br>0.202 06                                                                  | 0.189 46<br>0.195 58<br>0.201 58                                                         |

## PROPERTIES OF COPPER WIRE.

English system-Brown & Sharpe gauge.

| ä        |                   | d <sup>s</sup> .                | Weights.       |        | Resistances per 1 000<br>feet in International<br>ohms. |                                             |  |
|----------|-------------------|---------------------------------|----------------|--------|---------------------------------------------------------|---------------------------------------------|--|
| Numbers. | Diameter<br>mils. | Areas in<br>circulai<br>C. M. = | 1 000<br>feet. | Mile.  | At 60° F.                                               | At 75° F.                                   |  |
| 0 000    | 460.              | 211 600.                        | 641.           | 3 382. | .048 11                                                 | .049 66                                     |  |
| 000      | 410.              | 168 100.                        | 509.           | 2 687. | .060 56                                                 | .062 51                                     |  |
| 00       | 365.              | 133 225.                        | 403.           | 2 129. | .076 42                                                 | .078 87                                     |  |
| 0        | 325.              | 105 625.                        | 320.           | 1 688. | .096 39                                                 | .099 48                                     |  |
| 1        | 289.              | 83 521.                         | 253.           | 1 335. | .121 9                                                  | .125 8                                      |  |
| 2        | 258.              | 66 564.                         | 202.           | 1 064. | .152 9                                                  | .157 9                                      |  |
| 3        | 229.              | 52 441.                         | 159.           | 838.   | .194 1                                                  | .200 4                                      |  |
| 4        | 204.              | 41 616.                         | 126.           | 665.   | .244 6                                                  | .252 5                                      |  |
| 5        | 182.              | 33 124.                         | 100.           | 529.   | .307 4                                                  | .317 2                                      |  |
| 6        | 162.              | 26 244.                         | 79.            | 419.   | .387 9                                                  | .400 4                                      |  |
| 7        | 144.              | 20 736.                         | 63.            | 831.   | .491                                                    | .506 7                                      |  |
| 8        | 128.              | 16 384.                         | 50.            | 262.   | .621 4                                                  | .641 3                                      |  |
| 9        | 114.              | 12 996.                         | 39.            | 268.   | .783 4                                                  | .808 5                                      |  |
| 10       | 102.              | 10 404.                         | 32.            | 166.   | .978 5                                                  | 1.01                                        |  |
| 11       | 91.               | 8 281.                          | 25.            | 132.   | 1.229                                                   | 1.269                                       |  |
| 12       | 81.               | 6 561.                          | 20.            | 105.   | 1.552                                                   | $1.601 \\ 2.027 \\ 2.565 \\ 3.234 \\ 4.04$  |  |
| 13       | 72.               | 5 184.                          | 15.7           | 83.    | 1.964                                                   |                                             |  |
| 14       | 64.               | 4 096.                          | 12.4           | 65.    | 2.485                                                   |                                             |  |
| 15       | 57.               | 3 249.                          | 9.8            | 52.    | 3.133                                                   |                                             |  |
| 16       | 51.               | 2 601.                          | 7.9            | 42.    | 3.914                                                   |                                             |  |
| 17       | 45.               | 2 025.                          | 6.1            | 82.    | 5.028                                                   | 5.189                                       |  |
| 18       | 40.               | 1 600.                          | 4.8            | 25.6   | 6.363                                                   | 6.567                                       |  |
| 19       | 36.               | 1 296.                          | 3.9            | 20.7   | 7.855                                                   | 8.108                                       |  |
| 20       | 32.               | 1 024.                          | 3.1            | 16.4   | 9.942                                                   | 10.26                                       |  |
| 21       | 28.5              | 812.3                           | 2.5            | 13.    | 12.53                                                   | 12.94                                       |  |
| 22       | 25.3              | 640.1                           | 1.9            | 10.2   | 15.9                                                    | $16.41 \\ 20.57 \\ 26.01 \\ 32.79 \\ 41.56$ |  |
| 23       | 22.6              | 510.8                           | 1.5            | 8.2    | 19.93                                                   |                                             |  |
| 24       | 20.1              | 404.                            | 1.2            | 6.5    | 25.2                                                    |                                             |  |
| 25       | 17.9              | 320.4                           | .97            | 5.1    | 81.77                                                   |                                             |  |
| 26       | 15.9              | 252.8                           | .77            | 4.     | 40.27                                                   |                                             |  |
| 27       | 14.2              | 201.6                           | .61            | 8.2    | 50.49                                                   | 52.11                                       |  |
| 28       | 12.6              | 158.8                           | .48            | 2.5    | 64.13                                                   | 66.18                                       |  |
| 29       | 11.3              | 127.7                           | .39            | 2.     | 79.73                                                   | 82.29                                       |  |
| 30       | 10.               | 100.                            | .3             | 1.6    | 101.8                                                   | 105.1                                       |  |
| 31       | 8.9               | 79.2                            | .24            | 1.27   | 128.5                                                   | 132.7                                       |  |
| 32       | 8.                | 64.                             | .19            | 1.02   | 159.1                                                   | 164.2                                       |  |
| 33       | 7.1               | 50.4                            | .15            | .81    | 202.                                                    | 208.4                                       |  |
| 34       | 6.3               | 39.7                            | .12            | .63    | 256.5                                                   | 264.7                                       |  |
| 35       | 5.6               | 31.4                            | .095           | .5     | 324.6                                                   | 335.1                                       |  |
| 36       | 5.                | 25.                             | .076           | .4     | 407.2                                                   | 420.3                                       |  |

## PROPERTIES OF COPPER WIRE.-(Cont.)

#### English system-Birmingham wire gauge.

|                              | s in<br>mils.<br>d <sup>2</sup> . |                                                                                          | We                                                                                                      | ights,                                                                                                  | Resistances per 1 000<br>feet in International<br>ohms. |                                            |  |
|------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|--|
| Numbers.                     | Diameter<br>mils.                 | Areas in<br>circular<br>C. M.                                                            | 1 000<br>feet.                                                                                          | Mile.                                                                                                   | At 60° F.                                               | At 75° F.                                  |  |
| 0 000                        | 454.                              | 206 116.                                                                                 | 624.                                                                                                    | 3 294.                                                                                                  | .049 39                                                 | .050 98                                    |  |
| 000                          | 425.                              | 180 625.                                                                                 | 547.                                                                                                    | 2 887.                                                                                                  | .056 36                                                 | .058 17                                    |  |
| 00                           | 380.                              | 144 400.                                                                                 | 437.                                                                                                    | 2 308.                                                                                                  | .070 5                                                  | .072 77                                    |  |
| 0                            | 340.                              | 115 600.                                                                                 | 350.                                                                                                    | 1 847.                                                                                                  | .088 07                                                 | .090 89                                    |  |
| 1                            | 300.                              | 90 000.                                                                                  | 272.                                                                                                    | 1 438.                                                                                                  | .113 1                                                  | .116 7                                     |  |
| 2                            | 284.                              | 80 656.                                                                                  | 244.                                                                                                    | 1 289.                                                                                                  | .126 2                                                  | .130 3                                     |  |
| 3                            | 259,                              | 67 081.                                                                                  | 203.                                                                                                    | 1 072.                                                                                                  | .151 8                                                  | .156 6                                     |  |
| 4                            | 238.                              | 56 644.                                                                                  | 171.                                                                                                    | 905.                                                                                                    | .179 7                                                  | .185 5                                     |  |
| 5                            | 220.                              | 48 400.                                                                                  | 146.                                                                                                    | 773.                                                                                                    | .210 3                                                  | .217 1                                     |  |
| 6                            | 203.                              | 41 209.                                                                                  | 125.                                                                                                    | 659.                                                                                                    | .247 1                                                  | .255                                       |  |
| 7                            | 180.                              | 32 400.                                                                                  | 98.                                                                                                     | 518.                                                                                                    | .314 2                                                  | .324 3                                     |  |
| 8                            | 165.                              | 27 225.                                                                                  | 82.                                                                                                     | 435.                                                                                                    | .873 9                                                  | .385 9                                     |  |
| 9                            | 148.                              | 21 904.                                                                                  | 66.                                                                                                     | 350.                                                                                                    | .464 8                                                  | .479 7                                     |  |
| 10                           | 134.                              | 17 956.                                                                                  | 54.                                                                                                     | 287.                                                                                                    | .567                                                    | .585 2                                     |  |
| 11                           | 120.                              | 14 400.                                                                                  | 44.                                                                                                     | 230.                                                                                                    | .707                                                    | .729 7                                     |  |
| $12 \\ 13 \\ 14 \\ 15 \\ 16$ | 109.<br>95.<br>83.<br>72.<br>65.  | $\begin{array}{c} 11 \ 881. \\ 9 \ 025. \\ 6 \ 889. \\ 5 \ 184. \\ 4 \ 225. \end{array}$ | $36. \\ 27.3 \\ 20.8 \\ 15.7 \\ 12.8$                                                                   | 190.<br>144.<br>110.<br>83.<br>68.                                                                      | .856 9<br>1.128<br>1.478<br>1.964<br>2.41               | .884 4<br>1.164<br>1.525<br>2.027<br>2.487 |  |
| 17                           | 58.                               | 3 364.                                                                                   | $     \begin{array}{r}       10.2 \\       7.3 \\       5.3 \\       3.7 \\       3.1     \end{array} $ | 54                                                                                                      | 3.026                                                   | 3.123                                      |  |
| 18                           | 49.                               | 2 401.                                                                                   |                                                                                                         | 38.4                                                                                                    | 4.24                                                    | 4.376                                      |  |
| 19                           | 42.                               | 1 764.                                                                                   |                                                                                                         | 28.2                                                                                                    | 5.771                                                   | 5.957                                      |  |
| 20                           | 35.                               | 1 225.                                                                                   |                                                                                                         | 19.6                                                                                                    | 8.311                                                   | 8.577                                      |  |
| 21                           | 32.                               | 1 024.                                                                                   |                                                                                                         | 16.4                                                                                                    | 9.942                                                   | 10 26                                      |  |
| 2:2                          | 28.                               | 784.                                                                                     | 2.4                                                                                                     | $     \begin{array}{r}       12.5 \\       10. \\       7.7 \\       6.4 \\       5 2     \end{array} $ | 12.99                                                   | 13.4                                       |  |
| 23                           | 25.                               | 625.                                                                                     | 1.9                                                                                                     |                                                                                                         | 16.29                                                   | 16.81                                      |  |
| 24                           | 22.                               | 484.                                                                                     | 1.5                                                                                                     |                                                                                                         | 21.03                                                   | 21.71                                      |  |
| 25                           | 20.                               | 400.                                                                                     | 1.2                                                                                                     |                                                                                                         | 25.45                                                   | 26.27                                      |  |
| 26                           | 18.                               | 324.                                                                                     | .98                                                                                                     |                                                                                                         | 31.42                                                   | 32.43                                      |  |
| 27                           | 16.                               | 256.                                                                                     | .77                                                                                                     | 4.1                                                                                                     | 39.77                                                   | 41.04                                      |  |
| 28                           | 14.                               | 196.                                                                                     | .59                                                                                                     | 3.1                                                                                                     | 51.94                                                   | 53.61                                      |  |
| 29                           | 13.                               | 169.                                                                                     | .51                                                                                                     | 2.7                                                                                                     | 60.24                                                   | 62.17                                      |  |
| 30                           | 12.                               | 144.                                                                                     | .44                                                                                                     | 2.3                                                                                                     | 70.7                                                    | 72.97                                      |  |
| 31                           | 10.                               | 100.                                                                                     | .3                                                                                                      | 1.6                                                                                                     | 108.                                                    | 105.1                                      |  |
| 32                           | 9.                                | 81.                                                                                      | .25                                                                                                     | $1.3 \\ 1.02 \\ .78 \\ .4 \\ .256$                                                                      | 125.7                                                   | 129.7                                      |  |
| 33                           | 8.                                | 64.                                                                                      | .19                                                                                                     |                                                                                                         | 159.1                                                   | 164.2                                      |  |
| 34                           | 7.                                | 49.                                                                                      | .15                                                                                                     |                                                                                                         | 207.8                                                   | 214.4                                      |  |
| 35                           | 5.                                | 25.                                                                                      | .075                                                                                                    |                                                                                                         | 407.2                                                   | 420.3                                      |  |
| 36                           | 4.                                | 16.                                                                                      | .048                                                                                                    |                                                                                                         | 636.3                                                   | 656.7                                      |  |

## PROPERTIES OF COPPER WIRE .-- (Cont.)

### English system-New British standard gauge.

|          | s in              | r mils.                         | Wei            | ights. | Resistances per 1 000<br>feet in International<br>ohms. |                                                                                 |  |
|----------|-------------------|---------------------------------|----------------|--------|---------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Numbers. | Diameter<br>mils. | Areas in<br>Circula<br>C M. = d | 1 000<br>feet. | Mile.  | At 60° F.                                               | At 75° F.                                                                       |  |
| 000 000  | 464.              | 215 296.                        | 652.           | 3 441. | .047 29                                                 | .048 8                                                                          |  |
| 00 000   | 432.              | 186 624.                        | 565.           | 2 983. | .054 55                                                 | .056 8                                                                          |  |
| 0 000    | 400.              | 160 000.                        | 484.           | 2 557. | .063 63                                                 | .065 67                                                                         |  |
| 000      | 372.              | 138 384.                        | 419.           | 2 212. | .073 57                                                 | .075 98                                                                         |  |
| 000      | 348.              | 121 104.                        | 367.           | 1 935. | .084 07                                                 | .086 76                                                                         |  |
| 0        | 324.              | 104 976.                        | 818.           | 1 678. | .969 8                                                  | $\begin{array}{r} .100\ 09\\ .116\ 7\\ .137\ 9\\ .165\ 5\\ .195\ 2 \end{array}$ |  |
| 1        | 300.              | 90 000.                         | 272.           | 1 438. | .113 1                                                  |                                                                                 |  |
| 2        | 276.              | 76 176.                         | 231.           | 1 217. | .133 6                                                  |                                                                                 |  |
| 8        | 252.              | 63 504.                         | 192.           | 1 015. | .160 3                                                  |                                                                                 |  |
| 4        | 232.              | 53 824.                         | 163.           | 860.   | .189 2                                                  |                                                                                 |  |
| 5        | 212.              | 44 914.                         | 136.           | 718.   | .226 5                                                  | .233 8                                                                          |  |
| 6        | 192.              | 36 864.                         | 112.           | 589.   | .276 2                                                  | .285                                                                            |  |
| 7        | 176.              | 30 976.                         | 94.            | 495.   | .328 7                                                  | .339 2                                                                          |  |
| 8        | 160.              | 25 600.                         | 77.            | 409.   | .397 7                                                  | .410 4                                                                          |  |
| 9        | 144.              | 20 736.                         | 63.            | 831.   | .491                                                    | .506 7                                                                          |  |
| 10       | 128.              | 16 384.                         | 50.            | 262.   | .621 4                                                  | .641 3                                                                          |  |
| 11       | 116.              | 13 456.                         | 41.            | 215.   | .756 6                                                  | .780 9                                                                          |  |
| 12       | 104.              | 10 816.                         | 33.            | 173.   | .941 3                                                  | .971 5                                                                          |  |
| 13       | 92.               | 8 464.                          | 25.6           | 135.   | 1.203                                                   | 1.241                                                                           |  |
| 14       | 80.               | 6 400.                          | 19.4           | 102.   | 1.591                                                   | 1.642                                                                           |  |
| 15       | 72.               | 5 184.                          | 15.7           | 83.    | 1.964                                                   | $\begin{array}{r} 2.027 \\ 2.565 \\ 3.351 \\ 4.561 \\ 6.567 \end{array}$        |  |
| 16       | 64.               | 4 096.                          | 12.4           | 65.    | 2.486                                                   |                                                                                 |  |
| 17       | 56.               | 3 136.                          | 9.5            | 50.    | 3.246                                                   |                                                                                 |  |
| 18       | 48.               | 2 304.                          | 7.             | 36.8   | 4.419                                                   |                                                                                 |  |
| 19       | 40.               | 1 600.                          | 4.8            | 25.6   | 6.363                                                   |                                                                                 |  |
| 20       | 36.               | 1 296.                          | 8.9            | 20.7   | 7.855                                                   | 8.108                                                                           |  |
| 21       | 32.               | 1 024.                          | 8.1            | 16.4   | 9.942                                                   | 10.26                                                                           |  |
| 22       | 28.               | 784.                            | 2.4            | 12.5   | 12.99                                                   | 13.4                                                                            |  |
| 23       | 24.               | 576.                            | 1.7            | 9.2    | 17.67                                                   | 18.24                                                                           |  |
| 24       | 22.               | 484.                            | 1.5            | 7.7    | 21.03                                                   | 21.71                                                                           |  |
| 25       | 20.               | 400.                            | 1.2            | 6.4    | 25.45                                                   | 26.27                                                                           |  |
| 26       | 18.               | 324.                            | .98            | 5.2    | 31.42                                                   | 32.43                                                                           |  |
| 27       | 16.4              | 269.                            | .81            | 4.3    | 37.85                                                   | 39.07                                                                           |  |
| 28       | 14.8              | 219.                            | .66            | 8.5    | 46.48                                                   | 47.97                                                                           |  |
| 29       | 13.6              | 185.                            | .56            | 3.     | 55.04                                                   | 56.81                                                                           |  |
| 30       | 12.4              | 153.8                           | .47            | 2.5    | 66.21                                                   | 68.34                                                                           |  |
| 81       | 11.6              | 134.6                           | .41            | 2.15   | 75.66                                                   | 78.09                                                                           |  |
| 32       | 10.8              | 116.6                           | .35            | 1.86   | 87.28                                                   | 90.08                                                                           |  |
| 33       | 10.               | 100.                            | .3             | 1.6    | 101.8                                                   | 105.1                                                                           |  |
| 34       | 9.2               | 84.6                            | .26            | 1.35   | 120.3                                                   | 124.1                                                                           |  |
| 35       | 8.4               | 70.6                            | .21            | 1.13   | 144.3                                                   | 148.9                                                                           |  |
| 36       | 7.6               | 57.8                            | .17            | .92    | 176.3                                                   | 181.9                                                                           |  |

22

## **PROPERTIES OF COPPER WIRE.**—(Cont.)

#### Metric system-Brown & Sharpe gauge.

| ź                            | ers in<br>meters,                                                             | n<br>e<br>neters.                                                                    | s per<br>leter in<br>rams.                | Resistances per kilo-<br>meter in Interna-<br>tional ohms.                |                                                                                                                 |  |
|------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Numbe                        | Diamet                                                                        | Areas i<br>squar<br>millin                                                           | Weight<br>kilon<br>kilog                  | At 60° F.                                                                 | At 75° F.                                                                                                       |  |
| 0 000<br>000<br>00<br>0<br>1 | $11.683 \\10.404 \\9.266 \\8.251 \\7.348$                                     | 107.2<br>85.01<br>67.43<br>53.47<br>42.41                                            | 954.3<br>756.8<br>600.2<br>480.4<br>377.4 | .157 8<br>.198 7<br>.250 7<br>.316 2<br>.399 9                            | .162 9<br>.205 1<br>.258 8<br>.326 4<br>.412 7                                                                  |  |
| 2<br>3<br>4<br>5<br>6        | 6.544<br>5.827<br>5.19<br>4.621<br>4.115                                      | <b>33.63</b><br>26.67<br>21.16<br>16.77<br>13.3                                      | 299.3<br>237.4<br>188.3<br>149.3<br>118.4 | $\begin{array}{r} .501\ 8\\ .636\ 9\\ .802\ 6\\ 1.009\\ 1.273\end{array}$ | .517 9<br>.657 4<br>.828 4<br>1.041<br>1.314                                                                    |  |
| 7<br>8<br>9<br>10<br>11      | 3.665<br>3.263<br>2.906<br>2.588<br>2.305                                     | $\begin{array}{c} 10.55 \\ 8.362 \\ 6.633 \\ 5.26 \\ 4.173 \end{array}$              | 93.9<br>74.5<br>59.<br>46.8<br>87.1       | $\begin{array}{r} 1.611 \\ 2.039 \\ 2.57 \\ 3.21 \\ 4.033 \end{array}$    | $1.662 \\ 2.104 \\ 2.653 \\ 3.313 \\ 4.163$                                                                     |  |
| $12 \\ 13 \\ 14 \\ 15 \\ 16$ | $\begin{array}{r} 2.052 \\ 1.828 \\ 1.628 \\ 1.449 \\ 1.291 \end{array}$      | 3.307<br>2.625<br>2.082<br>1.649<br>1.309                                            | 29.5<br>23.4<br>18.5<br>14.7<br>11.7      | $5.091 \\ 6.443 \\ 8.155 \\ 10.28 \\ 12.84$                               | 5.253<br>6.65<br>8.416<br>10.61<br>13.25                                                                        |  |
| 17<br>18<br>19<br>20<br>21   | 1.15<br>1.024<br>.911 6<br>.811 8<br>.722 9                                   | $\begin{array}{r} 1.039 \\ .823 \ 6 \\ .652 \ 7 \\ .517 \ 6 \\ .410 \ 4 \end{array}$ | 9.23<br>7.32<br>5.8<br>4.61<br>3.65       | 16.5<br>20.88<br>25.77<br>32.62<br>41.11                                  | $     \begin{array}{r}       17.02 \\       21.55 \\       26.6 \\       33.66 \\       42.45     \end{array} $ |  |
| 22<br>23<br>24<br>25<br>26   | .643 8<br>.573 3<br>.510 5<br>.454 6<br>.404 9                                | $\begin{array}{r} .325\ 5\\ .258\ 1\\ .204\ 7\\ .162\ 3\\ .128\ 8\end{array}$        | 2.892.161.821.441.15                      | 52.16<br>65.39<br>82.68<br>104.2<br>132.1                                 | 53.84<br>- 67.49<br>85.33<br>107.6<br>136.3                                                                     |  |
| 27<br>28<br>29<br>30<br>31   | $\begin{array}{r} .360\ 5\\ .321\ 1\\ .285\ 9\\ .254\ 5\\ .226\ 7\end{array}$ | .102 1<br>.081<br>.064 2<br>.050 9<br>.040 4                                         | .908<br>.72<br>.572<br>.452<br>.359       | $165.1 \\ 210.4 \\ 261.6 \\ 334. \\ 421.6$                                | 171.<br>217.1<br>270.<br>344.8<br>435.4                                                                         |  |
| 32<br>33<br>34<br>35<br>36   | .201 9<br>.179 8<br>.160 1<br>.142 6<br>.127                                  | .032<br>.025 4<br>.020 1<br>.016<br>.012 7                                           | .284<br>.226<br>.179<br>.141<br>.113      | 522.<br>662.7<br>841.5<br>1 065.<br>1 336.                                | 538.7<br>683.7<br>868.4<br>1 099.<br>1 379.                                                                     |  |

### WEIGHTS OF COPPER WIRE.

Metric system-per kilometer, in kilograms.

| Numbers.                                                                                                                | Roebling.                                                                                                 | Brown<br>&<br>Sharpe.                                                                                                            | Birmingham<br>or<br>Stubs.                                                               | New British<br>standard.<br>970.9<br>841.6<br>721.5<br>624.<br>546.2<br>405.8<br>343.5<br>286.3<br>-242.7 |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| 000 000<br>00 000<br>0 000<br>000<br>000<br>000                                                                         | 954.3<br>833.9<br>696.5<br>591.<br>494.1                                                                  | 954.3<br>756.8<br>600.2                                                                                                          | 929.4<br>814.5<br>651.3                                                                  |                                                                                                           |  |
| 0<br>1<br>2<br>3<br>4                                                                                                   | 425.1<br>361.2<br>311.9<br>268.5<br>228.3                                                                 | 480.4<br>377.4<br>299.3<br>237.4<br>188.3                                                                                        | 521.3<br>405.8<br>363.3<br>302.6<br>255.3                                                |                                                                                                           |  |
| 5<br>6<br>7<br>8<br>9                                                                                                   | 193.2<br>166.2<br>141.3<br>118.3<br>98.8                                                                  | 149.3<br>118.4<br>93.9<br>74.5<br>59.                                                                                            | 218.8<br>185.9<br>146.1<br>122.8<br>98.8                                                 | 202.7<br>166.2<br>139.7<br>115.4<br>93.5                                                                  |  |
| 10         82.2           11         64.9           12         49.9           13         38.2           14         28.9 |                                                                                                           | 46.8<br>37.1<br>29.5<br>23.4<br>18.5                                                                                             | 81.<br>64.9<br>53.6<br>39.8<br>31.1                                                      | 73.9<br>60.7<br>48.8<br>38.2<br>28.9<br>23.4<br>18.5<br>14.1<br>10.4<br>7.22                              |  |
| 15<br>16<br>17<br>18<br>19                                                                                              | 23.4<br>17.9<br>13.2<br>9.96<br>7.58                                                                      | 14.7         23.4           11.7         19.1           9.23         15.2           7.32         10.8           5.8         7.95 |                                                                                          |                                                                                                           |  |
| 20<br>21<br>22<br>23<br>24                                                                                              | 5.52<br>4.61<br>3.54<br>2.81<br>2.38                                                                      | 4.61<br>3.65<br>2.89<br>2.16<br>1.82                                                                                             | 5.52<br>4.62<br>3.54<br>2.81<br>2.19                                                     | 5.85<br>4.61<br>3.54<br>2.59<br>2.19                                                                      |  |
| . 25<br>26<br>27<br>28<br>29                                                                                            | $     \begin{array}{r}       1.8 \\       1.46 \\       1.3 \\       1.15 \\       1.02     \end{array} $ | 1.44<br>1.15<br>.908<br>.72<br>.572                                                                                              | $ \begin{array}{r}     1.8 \\     1.46 \\     1.16 \\     .884 \\     .762 \end{array} $ | 1.8<br>1.46<br>1.21<br>.988<br>.833                                                                       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                   |                                                                                                           | .452<br>.359<br>.284<br>.226<br>.179                                                                                             | .649<br>.451<br>.365<br>.289<br>.22                                                      | .694<br>.607<br>.525<br>.451<br>.381                                                                      |  |
| 35<br>36                                                                                                                | .406<br>.365                                                                                              | .141<br>.113                                                                                                                     | .113<br>.071                                                                             | .319<br>.26                                                                                               |  |

| Diameters. |          | Weights per mile. |           |          | aking<br>inds, | sts.                       | dst-<br>le at<br>rna- |                                                          |
|------------|----------|-------------------|-----------|----------|----------------|----------------------------|-----------------------|----------------------------------------------------------|
| Required.  | Mazimum. | Minimum.          | Required. | Maximum. | Minimum.       | Minimum bre<br>strain. Pou | Minimum twi           | Maximum res<br>ance per mi<br>60° F. Inte<br>tional ohms |
| 224        | 226      | 2201/2            | 800       | 820      | 780            | 2400                       | ei (15                | 1.098                                                    |
| 194        | 196      | 191               | 600       | 615      | 585            | 1800                       | 20                    | 1.464                                                    |
| 158        | 1601/4   | 1551/2            | 400       | 410      | 390            | 1300                       | .≝ (25                | 2.195                                                    |
| 112        | 1131/4   | 1101/2            | 200       | 205      | 195            | 650                        | e (20                 | 4.391                                                    |
| 97         | 98       | 951/2             | 160       | 1533/4   | 1461/4         | 490                        | m 25                  | 5.855                                                    |
| 79         | 80       | 78                | 100       | 1021/2   | 971/2          | 330                        | E (30                 | 8.782                                                    |

### HARD-DRAWN COPPER WIRE.

British Post-office specifications.

"The wire shall be capable of being wrapped in six turns around wire of its own diameter, unwrapped and again wrapped in six turns around wire of its own diameter in the same direction as the first wrapping, without breaking; and shall be also capable of bearing the number of twists set down in the table, without breaking.

"The twist-test will be made as follows: The wire will be gripped by two vises, one of which will be made to revolve at a speed not exceeding one revolution per second. The twists thus given to the wire will be reckoned by means of an ink mark which forms a spiral on the wire during torsion, the full number of twists to be visible between the vises."

According to the above table, the mile-ohm of copper required is 878 pounds. This corresponds to a conductivity of 96.6 per cent., taking the value of the mile-ohm of 100 per cent. copper as 859.
| -sgrol        | Per cent. e         | 1.14    | Ι.           | 66'       | .9        | 16.        |
|---------------|---------------------|---------|--------------|-----------|-----------|------------|
| xj            | Twists in a fuches. | 30      | 40           | 40        | 44        | 47         |
| duc-<br>ity.  | .anminiM            | 96      | 96           | 96        | 96        | 96         |
| Con           | Required.           | 26      | 26           | 16        | 46        | 16         |
| lts of<br>ls. | .muminiM            | 152     | 151          | 152       | 52        |            |
| Weigl         | .aumixsM            | 218     | 219          | 218       | 72        |            |
| ghts.         | Per square<br>inch. | 62 100  | 64 600       | 64 800    | 66 500    | 68 200     |
| ting wei      | Actush<br>muminim.  | 1 301   | 538          | 519       | 827       | 212        |
| Breal         | Actual<br>required. | 1 828   | 549          | 540       | 334       | 220        |
| mile.         | .muminiM            | 431.1   | 170.4        | 162.      | 100.8     | 63.        |
| hts per 1     | .mumizsM            | 441.7   | 176.4        | 168.      | 105.7     | 67.5       |
| Welg          | Required.           | 436.4   | 173.4        | 165.      | 102.6     | 65.        |
| mils.         | .muminiM            | 164.    | 103.1        | 101.      | 79.3      | 63.        |
| eters in      | .mumixsM            | 166.    | 104.9        | 102.8     | 81.2      | 65.        |
| Diam          | .beriupeA           | 165.    | 104.         | 101.9     | 80.       | 64.        |
|               | Numbers.            | B. W. G | N. B. S. G., | B. & S. G | B. & S. G | B. & S. G. |

HARD-DRAWN COPPER WIRE.-(Continued.)

Telephone specifications.

### TENSILE STRENGTH OF COPPER WIRE.

| Numbers,<br>B. & S. G. | Breaking<br>Pou: | weight.<br>nds. | Numbers,<br>B. & S. G. | Breaking<br>Pour | weight.<br>nds. |
|------------------------|------------------|-----------------|------------------------|------------------|-----------------|
|                        | Hard-<br>drawn.  | An-<br>nealed.  |                        | Hard-<br>drawn.  | An-<br>nealed.  |
| 0.000                  | 8 310            | 5 650           | 9                      | 617              | 349             |
| 000                    | 6 580            | 4 480           | 10                     | 489              | 277             |
| 00                     | 5 226            | 3 553           | 11                     | 388              | 219             |
| 0                      | 4 558            | 2 818           | 12                     | 307              | 174             |
| 1                      | 3 746            | 2 234           | 13                     | 244              | 138             |
| 2                      | 3 127            | 1 772           | 14                     | 193              | 109             |
| 3                      | 2 480            | 1 405           | 15                     | 153              | 87              |
| 4                      | 1 967            | 1 114           | 16                     | 133              | 69              |
| 5                      | 1 559            | 883             | 17                     | 97               | 55              |
| 6                      | 1 237            | 700             | 18                     | 77               | 43              |
| 7                      | 980              | 555             | 19                     | 61               | 34              |
| 8                      | 778              | 440             | 20                     | 48               | 27              |

The strength of soft copper wire varies from 32 000 to 36 000 pounds per square inch, and of hard copper wire from 45 000 to 68 000 pounds per square inch, according to the degree of hardness.

The above table is calculated for  $34\,000$  pounds for soft wire and 60 000 pounds for hard wire, except for some of the larger sizes, where the breaking weight per square inch is taken at 50 000 pounds for 0000, 000 and 00, 55 000 for 0, and 57 000 pounds for 1.

| Numbers,<br>B. & S. G. | Diameters<br>in mils. | Weights per<br>mile.<br>Pounds. | Breaking weight.<br>Pounds. |
|------------------------|-----------------------|---------------------------------|-----------------------------|
| 0 000                  | 460                   | 3 200                           | 10 500                      |
| 000                    | 410                   | 2 537                           | 8 600                       |
| 00                     | 365                   | 2 022                           | 7 000 .                     |
| 0                      | 325                   | 1 620                           | 5 700                       |
| 1                      | 289                   | 1 264                           | 4 600                       |
| 2                      | 258                   | 1 003                           | 3 800                       |
| 3                      | 229                   | 797                             | 3 200                       |
| 4                      | 204                   | 629                             | 2 600                       |
| 5                      | 182                   | 490                             | 1 790                       |
| 6                      | 162                   | 398                             | 1 500                       |
| 7                      | 144                   | 814                             | 1 210                       |
| 8                      | 128                   | 246                             | 1 020                       |
| 9                      | 114                   | 203                             | 850                         |
| 10                     | 102                   | 157                             | 660                         |
| 11                     | 91                    | 127                             | 520                         |
| 12                     | 81                    | 100                             | 410                         |
| 14                     | 64                    | 63                              | 260                         |
| 16                     | 51                    | 40                              | 160                         |
| 18                     | 40                    | 25                              | 100                         |

BI-METALLIC WIRE.

This wire consists of a steel center with a cover of copper. Its conductivity is about 65 per cent. of that of pure copper. The percentage of copper and steel may vary a trifle, hence the strength and weight must be approximate.

## STRANDS OF COPPER WIRE.

COPPER WIRES are laid up into concentric strands or into ropes of seven strands. A rope of seven strands each composed of seven wires, is called a seven by seven rope, and is usually written 7x7. The number of wires that can be made into a strand is limited by the capacity of the stranding machinery. Two hundred wires is the usual limit of a concentric strand, and one hundred and thirty-three wires of a rope.

In a strand of circular milage, C. M., composed of n wires of diameter d, with a weight per 1 000 feet w, then we have

C. M. = d<sup>s</sup> × n.  

$$n = \frac{C. M.}{d^s}$$

$$d = \sqrt{\frac{C. M.}{n}}$$

$$w = .00305 \times C. M$$

The weights of strands are calculated about one per cent. heavier than a solid wire of the same circular milage, while the resistance is calculated for the solid wire.

In specifying how a strand shall be made, the number of wires to be used or the diameter of each wire may be given. In the first case the wire usually has to be specially drawn, and this will delay an order, especially a small order, unduly. It is, therefore, better to specify the size wires B. &. S. G., of which the strand is to be made.

The diameter of a strand may be calculated by multiplying the diameter of one wire by the factors given in the table at the bottom of the opposite page, according to the number of wires composing the strand.

## STRANDS OF COPPER WIRE.

Diameters and properties.

|                        |                   | Diame                        | eters.          | Wei            | ghts.  | at                                    |
|------------------------|-------------------|------------------------------|-----------------|----------------|--------|---------------------------------------|
| Numbers,<br>B. & S. G. | Circular<br>mils. | Decimal<br>parts of<br>inch. | Nearest<br>32d. | 1 000<br>feet. | Mile.  | Resistances<br>75° F.<br>per 1 000 ft |
|                        | 1 000 000         | 1.152                        | 1.3             | 3 050          | 16 104 | .010 51                               |
|                        | 950 000           | 1.125                        | 11%             | 2 898          | 15 299 | .011 06                               |
|                        | 900 000           | 1.092                        | 13              | 2 745          | 14 494 | .011 67                               |
|                        | 850 000           | 1.062                        | 12              | 2 593          | 13 688 | .012 36                               |
|                        | 800 000           | 1.035                        | 133             | 2 440          | 12 883 | .013 13                               |
|                        | 750 000           | .999                         | 1               | 2 288          | 12 078 | .014 01                               |
|                        | 700 000           | .963                         | 31              | 2 135          | 11 273 | .015 01                               |
|                        | 650 000           | .927                         | 15              | 1 983          | 10 468 | :016 17                               |
|                        | 600 000           | .891                         | 29              | 1 830          | 9 662  | .017 51                               |
|                        | 550 000           | .855                         | 7/8             | 1 678          | 8 857  | .019 1                                |
|                        | 500 000           | .819                         | 18              | 1 525          | 8 052  | .021 01                               |
|                        | 450 000           | .770                         | 33              | 1 373          | 7 247  | .023 35                               |
|                        | 400 000           | .728                         | 8/4             | 1 220          | 6 442  | .026 27                               |
|                        | 350 000           | .679                         | 11              | 1 068          | 5 636  | .030 02                               |
|                        | 300 000           | .630                         | 5/8             | 915            | 4 831  | .035 02                               |
|                        | 250 000           | .590                         | 19              | 762            | 4 026  | .042 03                               |
| 0 000                  | 211 600           | .530                         | 17              | 645            | 8 405  | .049 66                               |
| 000                    | 168 100           | .470                         | 15              | 513            | 2 709  | .062 51                               |
| 00                     | 133 225           | .420                         | 10              | 406            | 2 144  | .078 87                               |
| 0                      | 105 625           | .875                         | 8/8             | 322            | 1 700  | .099 48                               |
| 1                      | 83 521            | .330                         | 11              | 255            | 1 346  | .125 8                                |
| 2                      | 66 564            | 291                          | To              | 203            | 1 072  | .157 9                                |
| 3                      | 52 441            | .261                         | 33              | 160            | 845    | .200 4                                |
| 4                      | 41 616            | .231                         | 1/4             | 127            | 671    | .252 5                                |

| Numbers of<br>wires. | Factors. | Numbers of<br>wires. | Factors. |
|----------------------|----------|----------------------|----------|
| 3                    | 21/4     | 75                   | 101/4    |
| 7                    | 3        | 91                   | 11       |
| 12                   | 41/4     | 108                  | 121/4    |
| 19                   | 5        | 127                  | 13       |
| 27                   | 61/4     | 147                  | 141/4    |
| 37                   | 7        | 169                  | 15       |
| 48                   | 81/4     | 192                  | 161/4    |
| 61                   | 9        | 217                  | 17       |
| 7x7                  | 9        |                      |          |
| 7x19                 | 15       |                      |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 7x19   |         | 86.7<br>84.5<br>84.5<br>79.9<br>77.5                                              | 75.<br>72.5<br>69.9<br>67.1<br>64.2               | 61.3<br>58.1<br>51.2<br>51.2<br>47.4                | 43.8    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------|-----------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 7×7    |         | $\begin{array}{c} 142.9\\ 135.5\\ 135.5\\ 131.7\\ 127.8\end{array}$               | 123.7<br>119.5<br>115.2<br>110.7<br>106.          | 101.<br>95.8<br>90.4<br>84.5<br>78.3                | 71.4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 217    |         | 67.8<br>66.1<br>64.4<br>62.5<br>60.7                                              | 58.8<br>56.7<br>54.7<br>50.3<br>50.3              | 48.<br>45.5<br>42.9<br>40.1<br>37.1                 | 33.9    |
| and a subscription of the |        | 192    |         | 72.2<br>68.5<br>66.5<br>64.5                                                      | 62.5<br>58.2<br>58.2<br>53.9                      | 51.<br>48.4<br>45.6<br>39.5<br>39.5                 | 36.1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 169    |         | 76.9<br>74.9<br>72.9<br>68.7                                                      | 66.6<br>64.3<br>62.5<br>59.5<br>57.1              | 54.3<br>51.6<br>48.6<br>45.5<br>42.1                | 38.4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 147    |         | 82.5<br>80.4<br>76.<br>73.8<br>73.8                                               | 71.4<br>69.<br>66.5<br>63.9<br>61.2               | 55.3<br>57.2<br>45.2<br>45.2                        | 41.2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 127    |         | 88.7<br>86.4<br>84.1<br>81.8<br>79.3                                              | 76.8<br>74.2<br>71.5<br>68.7<br>65.8              | 62.7<br>59.5<br>56.1<br>52.6<br>48.6                | 44.3    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 108    | rire.   | 96.2<br>98.8<br>91.3<br>88.7<br>86.1                                              | 83.3<br>80.5<br>714.5<br>714.5                    | 68.<br>64.6<br>56.9<br>52.7                         | 48.1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f wire | 16     | еась w  | 104.8<br>99.5<br>98.7<br>98.7                                                     | 90.7<br>84.5<br>84.5<br>81.2<br>81.2<br>81.2      | 74.1<br>70.3<br>66.3<br>62.<br>57.4                 | 52.4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bers o | 75     | er of e | 115.5<br>112.6<br>109.5<br>108.5                                                  | 96.6<br>98.1<br>89.4<br>85.6                      | 81.7<br>77.5<br>73.<br>68.3<br>63.2                 | 57.7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num    | 19     | Diamet  | 128.<br>124.7<br>121.4<br>1118.<br>114.5                                          | 110.8<br>107.1<br>99.1<br>94.9                    | 90.5<br>85.8<br>85.8<br>80.9<br>70.1                | 64.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 48     |         | 144.8<br>140.7<br>136.9<br>138.1<br>129.1                                         | 125.<br>1126.<br>1116.4<br>1111.8                 | 102.1<br>96.8<br>91.3<br>85.4<br>79.1               | 72.2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 37     |         | 164.4<br>160.2<br>155.9<br>151.5<br>147.                                          | 142.8<br>137.5<br>132.5<br>127.3<br>127.3         | 116.2<br>110.3<br>97.2<br>90.                       | 82.1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 12     |         | 192.5<br>187.6<br>182.6<br>177.4<br>177.4                                         | 166.7<br>161.<br>155.2<br>149.1<br>142.7          | 136.1<br>129.1<br>121.7<br>113.9<br>105.4           | 96.2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 19     | 20      | 229.4<br>223.6<br>217.6<br>211.5<br>205.                                          | 198.6<br>191.9<br>184.9<br>177.6<br>170.1         | 162.2<br>158.8<br>145.<br>135.7<br>125.6            | 114.7   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 12     |         | $\begin{array}{c} 288.7 \\ 281.4 \\ 273.9 \\ 266.1 \\ 258.2 \\ 258.2 \end{array}$ | 250.<br>241.5<br>232.7<br>232.7<br>223.6<br>214.1 | 204.1<br>198.7<br>182.6<br>170.8<br>158.1           | 144.8   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 4      |         | 877.<br>868.4<br>368.4<br>358.5<br>348.4<br>338.4<br>338.4                        | 327.3<br>316.3<br>304.7<br>292.7<br>280.3         | 267.2<br>258.5<br>239.<br>239.<br>239.<br>207.      | 189.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 1      |         | 1 000.<br>974.6<br>948.6<br>921.9<br>894.4                                        | 866.<br>836.6<br>836.6<br>806.2<br>774.6<br>741.6 | 707.1<br>670.8<br>632.4<br>591.6<br>547.7           | 500.    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .alin  | a raiu | Circ    | 950 000<br>950 000<br>850 000<br>850 000                                          | 750 000<br>650 000<br>650 000<br>600 000          | 500 000<br>450 000<br>850 000<br>850 000<br>800 000 | 250 000 |

|       | 7x19    |              | 39.9<br>35.6<br>31.7<br>28.2<br>28.2<br>25.1       | 22.4<br>19.9<br>17.7<br>15.8<br>14.1         | 11.1<br>8.8<br>7.<br>5.6<br>4.4                                           | 3.5  |
|-------|---------|--------------|----------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|------|
|       | 7×7     |              | 65.7<br>58.6<br>52.1<br>46.4<br>41.3               | 36.9<br>32.7<br>29.1<br>26.<br>25.1          | 18.3<br>14.6<br>11.6<br>9.1<br>7.3                                        | 5.7  |
|       | 217     |              | 81.2<br>27.8<br>24.8<br>22.1<br>19.6               | 17.5<br>15.6<br>13.9<br>12.1<br>11.          | 8.7<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5 | 2.7  |
|       | 192     |              | 26.3<br>26.3<br>20.9<br>20.9                       | 18.6<br>16.5<br>14.7<br>13.1<br>11.7         | 9.2<br>5.8<br>8.7<br>8.7                                                  | 5.8  |
|       | 169     |              | 85.4<br>81.5<br>28.1<br>28.1<br>22.2               | 19.9<br>17.6<br>15.7<br>14.                  | 8.6.1.8<br>8.6.1.8<br>8.6.1.8<br>8.6                                      | 3.1  |
|       | 147     |              | 37.9<br>33.8<br>30.1<br>23.8<br>23.8<br>23.8       | 21.3<br>18.9<br>16.8<br>15.                  | 10.6<br>8.4<br>6.7<br>4.2<br>4.2                                          | 3.3  |
|       | 127     |              | 25.6<br>25.6                                       | 22.9<br>20.3<br>18.1<br>16.2<br>14.4         | 11.4<br>9.1<br>5.7<br>4.5                                                 | 3.5  |
| res.  | 108     | wire.        | 44.3<br>39.5<br>35.1<br>31.3<br>31.3<br>27.8       | 24.8<br>22.8<br>19.6<br>17.5<br>15.6         | 12.8<br>9.8<br>6.2<br>4.9                                                 | 3.8  |
| of wh | 16      | each         | 48.2<br>48.3<br>38.3<br>30.8                       | 27.1<br>24.<br>24.<br>19.1<br>19.1           | 13.4<br>10.7<br>6.7<br>5.3                                                | 4.2  |
| mbers | 75      | eter of      | 53.1<br>47.3<br>37.5<br>33.4                       | 29.8<br>26.5<br>23.6<br>21.<br>18.7          | 14.8<br>9.4<br>7.4<br>.5.9                                                | 4.6  |
| Nu    | 19      | Diam         | 58.9<br>52.5<br>46.7<br>41.6<br>87.                | 28.1<br>28.1<br>28.1<br>20.7                 | 16.4<br>13.1<br>10.4<br>6.5                                               | 5.1  |
|       | 48      |              | 67.9<br>69.2<br>52.7<br>46.9<br>41.7               | 37.2<br>33.1<br>29.5<br>26.3<br>26.3<br>26.3 | 18.5<br>14.7<br>11.7<br>9.2<br>7.4                                        | 5.8  |
|       | 37      |              | 75.6<br>67.4<br>60.<br>53.4<br>47.5                | 42.4<br>87.7<br>83.5<br>29.9<br>26.6         | 21.1<br>16.8<br>13.3<br>13.3<br>8.4                                       | 9.9  |
|       | 21      |              | 88.5<br>78.9<br>62.6<br>55.6                       | 49.7<br>44.1<br>39.3<br>35.<br>31.2          | 24.6<br>19.6<br>15.6<br>9.8<br>9.8                                        | 1.7  |
|       | 19      |              | 105.5<br>94.1<br>83.7<br>74.6<br>66.3              | 59.2<br>52.5<br>46.8<br>41.8<br>37.2         | 29.4<br>23.4<br>18.6<br>14.7<br>11.7                                      | 010  |
|       | 12      |              | $\frac{132.8}{105.4}$ 98.8 83.4                    | 74.5<br>66.1<br>58.9<br>52.5<br>46.8         | 87.<br>29.4<br>28.4<br>18.5<br>14.7                                       | 11.6 |
|       |         |              | 178.9<br>155.<br>138.<br>122.8<br>109.2            | 97.5<br>86.6<br>77.1<br>68.8<br>61.2         | 48.4<br>38.6<br>30.6<br>24.2<br>19.3                                      | 15.1 |
|       | 60      |              | 265.6<br>236.7<br>236.7<br>236.7<br>187.7<br>166.9 | 149.<br>1122.2<br>1117.8<br>105.1<br>93.5    | 73.9<br>58.9<br>46.8<br>37.<br>29.4                                       | 28.1 |
|       | .9 .8 % | Numi<br>B. d | 000001                                             | 01004100                                     | 8<br>11<br>16<br>11<br>16<br>11<br>8                                      | 18   |

|            | 12 N.<br>B. S. G. |         | 92.5<br>87.9<br>83.8<br>83.8<br>76.                              | 69.4<br>60.1<br>50.5<br>50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.3<br>41.6<br>37.<br>32.4<br>27.8                                                | 1 90    |
|------------|-------------------|---------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------|
|            | 30                |         | $\begin{array}{c} 10 \\ 9 \\ 500. \\ 8 \\ 500. \end{array}$      | 7 500.<br>6 500.<br>5 500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 5\ 000.\\ 8\ 500.\\ 3\ 500.\\ 3\ 000.\\ \end{array}$             | 9 500   |
| 1 - New In | 58                |         | 6 299.<br>5 984.<br>5 354.<br>5 039.                             | 4 724<br>4 409.<br>4 1094.<br>3 779.<br>3 464.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 3 & 149 \\ 2 & 835 \\ 2 & 520 \\ 2 & 205 \\ 1 & 890 \end{array}$ | 1 575   |
|            | 25                |         | 8 121.<br>2 965.<br>2 809.<br>2 497.                             | 2 341.<br>2 185.<br>2 029.<br>1 873.<br>1 717.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 561.<br>1 405.<br>1 248.<br>1 092.<br>936.3                                      | 790.9   |
|            | 22                |         | 1 562.<br>1 484.<br>1 486.<br>1 328.<br>1 250.                   | $\begin{array}{c} 1 & 172. \\ 1 & 094. \\ 1 & 015. \\ 937.4 \\ 859.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 781.1<br>702.9<br>624.9<br>546.8<br>468.7                                          | 8008    |
| uge.       | 20                |         | 976.6<br>927.8<br>878.9<br>830.1<br>781.3                        | $\begin{array}{c} 732.4 \\ 683.6 \\ 634.8 \\ 585.9 \\ 537.1 \\ 537.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 488.3<br>439.5<br>390.6<br>341.8<br>298.                                           | 944 9   |
| rpe ga     | 19                | strands | 771.6<br>733.<br>694.4<br>655.9<br>617.3                         | 578.7<br>540.1<br>501.6<br>463.<br>424.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 385.8\\ 347.2\\ 308.6\\ 270.1\\ 231.5\end{array}$                | 100 0   |
| & Sha      | 18                | res in  | 625.<br>593.8<br>562.5<br>583.3<br>500.                          | 468.8<br>437.5<br>375.<br>343.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 312.5<br>281.3<br>250.<br>250.<br>187.5                                            | 156.2   |
| Brown      | 41                | i of wi | 493.8<br>469.1<br>444.5<br>419.8<br>395.1                        | 370.4<br>345.7<br>321.<br>2296.3<br>271.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 246.9\\ 222.2\\ 197.5\\ 172.8\\ 148.2\end{array}$                | 199.5   |
| bers, ]    | 16                | umber   | 384.5<br>365.3<br>346.1<br>326.8<br>326.8<br>307.6               | $\begin{array}{c} 288.4 \\ 269.2 \\ 249.9 \\ 230.7 \\ 211.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192.8<br>173.<br>153.8<br>134.6<br>115.4                                           | 06.1    |
| Num        | 15                | N       | 307.8<br>292.4<br>277.<br>261.6<br>246.2                         | 230.8<br>215.5<br>200.1<br>184.7<br>169.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{153.9}{128.5}$ $\frac{123.1}{107.7}$ $\frac{92.3}{92.3}$                    | 44      |
|            | 14                |         | 244.1<br>231.9<br>231.9<br>207.5<br>195.3                        | $\frac{183.1}{170.9}$ $\frac{158.7}{146.5}$ $134.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.1<br>109.8<br>97.6<br>85.4<br>73.2                                             | 13      |
|            | 18                |         | 192.9<br>183.2<br>173.6<br>164.<br>154.3                         | $\frac{144.7}{135.}$ 125.4 115.7 106.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96.5<br>86.8<br>86.8<br>67.5<br>67.5                                               | 40.0    |
|            | 12                | 20      | 152.4<br>144.8<br>137.2<br>129.5<br>121.9                        | $114.3 \\ 106.7 \\ 99.1 \\ 91.4 \\ 83.8 \\ 83.8 \\ 83.8 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 \\ 91.4 $ | 76.2<br>68.6<br>61.<br>53.3<br>45.7                                                | 001     |
|            | Ħ                 |         | $\frac{120.8}{114.8}$ $\frac{120.8}{108.7}$ $\frac{102.7}{96.6}$ | 90.6<br>84.6<br>72.5<br>66.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.4<br>54.4<br>48.3<br>42.3<br>36.2                                               | 6 08    |
|            | 10                |         | 96.1<br>91.3<br>86.5<br>81.7<br>76.9                             | 72.1<br>67.3<br>62.5<br>52.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48.1<br>48.2<br>38.4<br>33.6<br>28.8                                               | 16      |
|            | 00                |         | 61.<br>58.<br>51.9<br>48.8                                       | 45.8<br>45.8<br>39.7<br>33.6<br>33.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.5<br>27.5<br>24.4<br>21.4<br>18.3                                               | 15.9    |
| -          | alim tal          | Circu   | 000 000<br>950 000<br>850 000<br>850 000<br>850 000              | $\begin{array}{c} 750 \ 000 \\ 650 \ 000 \\ 650 \ 000 \\ 650 \ 000 \\ 650 \ 000 \\ 650 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \\ 600 \ 000 \ 000 \\ 600 \ 000 \ 000 \\ 600 \ 000 \ 000 \\ 600 \ 000 \ 000 \\ 600 \ 000 \ 000 \ 000 \\ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \$                                                                                                                                                                      | 500 000<br>450 000<br>350 000<br>350 000<br>300 000                                | 960 000 |

JOHN A. ROEBLING'S SONS CO.

| Numbers, Bro         Numbers, Bro           10         11         12         13         14         15         1           10         11         12         13         14         15         1           11         12         13         14         15         1           11         12         13         14         15         1           112         13         14         15         1         1           112         155         55,7         32,3         40,9         51,5         65         65           112         10,2         12,8         16,4         51,7         32,3         40,9         51,5         65         65         65         65         65         65         65         65         66         64         81,1         10,2         12,8         10,2         12,8         16,2         26,4         26,7         26,7         26,7         26,7         26,3         64         81,1         10,2         12,8         10,2         12,8         16,2         26,4         26,7         26,7         26,7         26,7         26,7         26,7         26,7         26,7         26,7         26,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr         10         11         12         13         14           10         11         12         13         14           10         11         12         13         14           11         12         13         14         15           16.4         25,7         32.3         40.9         51.5           11.8         116.2         25.4         32.3         40.9         51.5           11.8         116.2         25.4         35.3         40.9         51.6           11.8         110.2         112.8         16.4         35.1         36.4         36.7           5.1         6.4         8.1         10.2         12.8         16.4         30.4         51.6           3.2         4.1         10.2         12.8         16.4         30.4         51.6         30.4         55.7           3.2         4.1         6.4         8.1         10.2         12.8         10.4         30.7           3.2.3         4.1         10.2         12.8         16.4         30.1         30.1           3.2.3         4.1         5.1         6.4         8.1         30.1         30.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10         11         12         13           16         11         12         13           16.2         20,4         25,7         32           16.2         20,4         25,7         32           16.2         20,4         25,3         32           16.2         20,4         25,3         32           10.2         11,2         13         32           10.2         12,3         13,2         32           10.2         12,3         12,3         12,3           5.1         6,4         10,2         12,3           5.1         6,4         10,2         12,3           11.6         1,3         12,3         12,6           5.2         5,4         6         5           11.6         1,3         12,6         5           11.6         1,3         12,6         5           11.6         1,3         1,4         6           12.3         1,2,6         5         5           11.         1,1         1,1         1,1           12.         1,1         1,1         1,1           12.         1,1         1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10         11           10         11           10,25,7         16,25,7           16,25,7         16,22,1           17,28,8         16,22           10,2,3         16,23           10,2,3         16,23           11,6         1,12           2,3,5         4,5,1           1,6         1,12           1,16         1,3           1,1,6         2,3           1,1,6         2,3           1,1,6         2,3           1,1,6         2,3           1,1,6         2,3           1,1,6         2,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,6         1,3           1,1,7         1,3           1,1,1,7         1,3           1,1,1,1,1         1,3           1,1,1,1         1,3           1,1,1         1,3 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10<br>20.4<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>5.1<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>112.8<br>11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# IRON WIRE.

I N COMPARING tables of the weights of Galvanized Iron Wire it was found that the weights of the various sizes were not consistent with each other in the same table, and that no two tables seemed to agree in regard to the specific gravity of the material.

This table is calculated from the formula, weight per mile  $= D^2 \times .013$  9, which seems to be the most likely value for galvanized iron wire. This corresponds with a specific gravity of 7.73, and a weight per cubic foot of 483 pounds.

Steel wire is slightly heavier, and it is probable the constant in the above formula should be .014 for galvanized steel wire.

The following average values of the mile-ohm were used in calculating the resistance per mile at 68° F., the International ohm being the unit:

| Kind of material. | Minimum. | Maximum. | Average. |
|-------------------|----------|----------|----------|
| E. B. B., ,       | 4 500    | 4 800    | 4 700    |
| B. B.,            | 5 300    | 6 000    | 5 500    |
| Steel,            | 6 000    | 7 000    | 6 500    |

The breaking weight of any wire equals its weight per mile multiplied by 3 for E. B. B., 3.3 for B. B., or 3.7 for steel, all annealed and galvanized. This corresponds to 53 100 pounds, 58 410 pounds, and 65 490 pounds per square inch, respectively.

The strength of steel wire varies from 50 000 pounds per square inch to over 300 000 pounds, according to the kind of material and its treatment.

By taking 100 000 pounds per square inch as the breaking strain of steel wire, the breaking strain of any other wire may easily be computed from the table. For a wire of 80 000 pounds per square inch breaking strain, take eight-tenths of the tabulated breaking strain for that size wire at 100 000 pounds per square inch given in the table.

# GALVANIZED IRON WIRE.

|                      |                       | We<br>Por      | ights,<br>unds. | Brea<br>wei<br>Pou | tking<br>ghts.<br>unds. | . Resist | ance pe<br>in ohms | er mile |
|----------------------|-----------------------|----------------|-----------------|--------------------|-------------------------|----------|--------------------|---------|
| Numbers,<br>B. W. G. | Diameters<br>in mils. | 1 000<br>feet. | One<br>mile.    | Iron.              | Steel.                  | E. B. B. | B. B.              | Steel.  |
| 0                    | 340                   | 304            | 1 607           | 4 821              | 9 079                   | 2.93     | 3.42               | 4.05    |
| 1                    | 800                   | 237            | 1 251           | 3 753              | 7 068                   | 3.76     | 4.4                | 5.2     |
| 2                    | 284                   | 212            | 1 121           | 3 363              | 6 335                   | 4.19     | 4.91               | 5.8     |
| 3                    | 259                   | 177            | 932             | 2 796              | 5 268                   | 5.04     | 5.9                | 6.97    |
| 4                    | 238                   | 149            | 787             | 2 361              | 4 449                   | 5.97     | 6.99               | 8.26    |
| 5                    | 220                   | 127            | 673             | 2 019              | 3 801                   | 6.99     | 8.18               | 9.66    |
| 6                    | 203                   | 109            | 573             | 1 719              | 3 237                   | 8.21     | 9.6                | 11.35   |
| 7                    | 180                   | 85             | 450             | 1 350              | 2 545                   | 10.44    | 12.21              | 14.43   |
| 8                    | 165                   | 72             | 378             | 1 134              | 2 138                   | 12.42    | 14.53              | 17.18   |
| 9                    | 148                   | 58             | 305             | 915                | 1 720                   | 15.44    | 18.06              | 21.35   |
| 10                   | 134                   | 47             | 250             | 750                | 1 410                   | 18.83    | 22.04              | 26.04   |
| 11                   | 120                   | 38             | 200             | 600                | 1 131                   | 23.48    | 27.48              | 32.47   |
| 12                   | 109                   | 31             | 165             | 495                | 933                     | 28.46    | 33.3               | 39.36   |
| 13                   | 95                    | 24             | 125             | 375                | 709                     | 37.47    | 43.85              | 51.82   |
| 14                   | 83                    | 18             | 96              | 288                | 541                     | 49.08    | 57.44              | 67.88   |
| 15                   | 72                    | 13.7           | 72              | 216                | 407                     | 65.23    | 76.33              | 90.21   |
| 16                   | 65                    | 11.1           | 59              | 177                | 832                     | 80.03    | 93.66              | 110.7   |
| 17                   | 58                    | 8.9            | 47              | 141                | 264                     | 100.5    | 120.4              | 139.    |
| 18                   | 49                    | 6.3            | 33              | 99                 | 189                     | 140.8    | 164.8              | 194.8   |

### GALVANIZED IRON TELEGRAPH WIRE.

#### Western Union Telegraph company's specifications. (Condensed).

"1. The wire to be soft and pliable, and capable of elongating 15 per cent. without breaking, after being galvanized.

"2. Great tensile strength is not required, but the wire must not break under a less strain than two and onehalf times its weight in pounds per mile.

"3. Tests for ductility will be made as follows: The piece of wire will be gripped by two vises, 6 inches apart, and twisted. The full number of twists must be distinctly visible between the vises on the 6-inch piece. The number of twists in a piece of 6 inches in length not to be under 15.

"4. The weight per mile for the different gauge wires to be: for No. 4,730 fbs.; No. 6,540 fbs.; No. 8,380 fbs.; No. 9,320 fbs.; No. 10, 250 fbs., or, as near these figures as practicable.

"5. The electrical resistance of the wire in ohms per mile, at a temperature of 65° Fahrenheit, must not exceed the quotient arising from the dividing the constant number 4 800 by the weight of the wire in pounds per mile. The coëfficient .003 will be allowed for each degree Fahrenheit in reducing to standard temperature.

"6. The wire must be well galvanized, and capable of standing the following tests: The wire will be plunged into a saturated solution of sulphate of copper, and permitted to remain one minute, and then wiped clean. This process will be performed four times. If the wire appears black after the fourth immersion, it shows that the zinc has not been all removed, and that the galvanizing is well done; but if it has a copper color, the iron is exposed, showing that the zinc is too thin."

| Diar     | neters in | mils.    | Wei       | ights per n<br>Pounds. | nile.    |                                          | St                       | rength an                               | d ductil                 | ity.                         |                          | əlim<br>ta əsi<br>-ar                                   |
|----------|-----------|----------|-----------|------------------------|----------|------------------------------------------|--------------------------|-----------------------------------------|--------------------------|------------------------------|--------------------------|---------------------------------------------------------|
| 'naunbau | .mumtxsM  | .muminiM | Required. | .mumixsM               | .muminiM | Minimum<br>breaking<br>weight.<br>Punda. | Twists in six<br>inches. | Breaking<br>Weight.<br>Not less<br>than | Twists in six<br>inches. | Breaking<br>Wot less<br>than | Twists in six<br>inches. | Resistance per<br>of standard substants<br>of F. Intern |
| 12       | 247       | 237      | . 008     | 833                    | 767      | 2 480                                    | 15                       | 2 550                                   | 14                       | 2 620                        | 13                       | 6.6                                                     |
| 60       | 214       | 204      | 600       | 629                    | 571      | 1 860                                    | 17                       | 1 910                                   | 16                       | 1 960                        | 15                       | 8.8                                                     |
| 18       | 186       | 176      | 450       | 477                    | 424      | 1 390                                    | 19                       | 1 425                                   | 18                       | 1 460                        | 17                       | 11.8                                                    |
| L        | 176       | 166      | 400       | 424                    | 377      | 1 240                                    | 21                       | 1 270                                   | 20                       | 1 300                        | 19                       | 13.3                                                    |
| I        | 125       | 118      | 200       | 213                    | 190      | 620                                      | 30                       | 638                                     | 28                       | 655                          | 26                       | 26.6                                                    |

87

JOHN A. ROEBLING'S SONS CO.

performed with each sample without there being, as there would be if the coating of zinc were too thin, any sign of a redbar 2% inches in diameter without any signs appearing of the zine cracking or peeling off; the 600-h, wire shall similarly bear bending around a bar 2/4 inches in diameter; the 450-b, and 400-b, wire around a bar 2 inches in diameter; and the dish deposit of metallic copper on the wire. Samples taken from picces of the 800-fb, wire shall also bear bending around a 200-b. wire around a bar 1% inches in diameter." The mile-ohm is 5 323.

### GALVANIZED SUPPORTING STRANDS.

What weight per foot will a half-inch ordinary strand support if the strain is one-half the breaking weight, the span 120 feet, and the deflection .01 of the span or 1.2 feet?

One-half the breaking weight of a half-inch ordinary galvanized strand is 4160 pounds. The value of S for above span and deflection, table page 50, is 1500.2. Dividing 4160 by 1500.2 we find the total weight per foot to be 2.773 pounds. Deducting from this the weight per foot of the half-inch galvanized strand we have 2.263 pounds as the weight per foot of cable that this strand will support. While it is true that a factor of safety of two in this work is too small, yet the cables help in a great measure to carry their own weight. It is believed that galvanized strands will easily carry the loads indicated on page 39.

| Diameters in<br>32ds of an | Weights per 100<br>feet. | Estimated brea<br>Pour | king strength<br>ids. |
|----------------------------|--------------------------|------------------------|-----------------------|
| inch.                      | Pounds.                  | Ordinary.              | Special.              |
| 16                         | 51                       | 8 320                  | 16 640                |
| 15                         | 48                       | 7 500                  | 15 000                |
| 14                         | 37                       | 6 000                  | 12 000                |
| 12                         | 30                       | 4 700                  | 9 400                 |
| 10                         | 21                       | 3 300                  | 6 600                 |
| . 9                        | 18                       | 2 600                  | 5 200                 |
| 8                          | 111%                     | 1 750                  | 3 500                 |
| 7                          | 83/4                     | 1 300                  | 2 600                 |
| 6                          | 61/2                     | 1 000                  | 2 000                 |
| 5                          | 41/2                     | 700                    | 1 400                 |
| 4                          | 21/4                     | 375                    | 750                   |
| 3                          | 2                        | 320                    | 640                   |

This strand is composed of seven wires, twisted together into a single strand.

|                                 | FOR                                       | TING                                                                                          | CA:                                                                                             | PACI<br>TRA<br>Ordin                      | TY (<br>NDS.<br>ary.                      | OF G                                      | ALV.                                                | ANIZ                                      | ED                                                                                                             |
|---------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 2ds                             |                                           |                                                                                               |                                                                                                 | Spa                                       | ns in f                                   | 'eet.                                     |                                                     |                                           |                                                                                                                |
| aters of<br>nds in 3<br>n inch. | 100                                       | 110                                                                                           | 120                                                                                             | 125                                       | 130                                       | 140                                       | 150                                                 | 175                                       | 200                                                                                                            |
| Diame<br>strai<br>of a          |                                           | We                                                                                            | eights o                                                                                        | of 1 000                                  | feet of                                   | f cable                                   | Pour                                                | nds.                                      |                                                                                                                |
| 16<br>15,<br>14<br>12<br>10     | 2 818<br>2 520<br>2 030<br>1 580<br>1 110 | 2 516<br>2 247<br>1 812<br>1 409<br>899                                                       | 2 263<br>2 020<br>1 630<br>1 266<br>890                                                         | $2 152 \\1 920 \\1 550 \\1 204 \\846$     | 2 050<br>1 827<br>1 476<br>1 146<br>805   | 1867166313441043733                       | $1 \\ 709 \\ 1 \\ 520 \\ 1 \\ 230 \\ 953 \\ 670 \\$ | 1 391<br>1 234<br>1 001<br>774<br>544     | $1 154 \\ 1 130 \\ 900 \\ 640 \\ 450 \\ 1 \\ 1 \\ 900 \\ 640 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $ |
| 9<br>8<br>7<br>6                | 860<br>585<br>433<br>337                  | 765<br>521<br>385<br>300                                                                      | 680<br>468<br>846<br>270                                                                        | 652<br>445<br>329<br>257                  | 620<br>423<br>313<br>245                  | 563<br>385<br>284<br>223                  | $513 \\ 352 \\ 260 \\ 204$                          | 414<br>285<br>210<br>165                  | 340<br>231<br>172<br>132                                                                                       |
|                                 |                                           |                                                                                               |                                                                                                 | Spec                                      | ial.                                      |                                           |                                                     |                                           |                                                                                                                |
| 2ds                             |                                           |                                                                                               |                                                                                                 | Spa                                       | ns in t                                   | feet.                                     |                                                     |                                           |                                                                                                                |
| eters of<br>nds in 3<br>n inch. | 100                                       | 110                                                                                           | 120                                                                                             | 125                                       | 130                                       | 140                                       | 150                                                 | 175                                       | 200                                                                                                            |
| Diam<br>stra                    |                                           | We                                                                                            | eights o                                                                                        | of 1 000                                  | feet o                                    | f cable                                   | . Pour                                              | nds.                                      |                                                                                                                |
| 16<br>15<br>14<br>12<br>10      | 6 146<br>5 520<br>4 430<br>3 460<br>2 430 | 5 482<br>4 974<br>3 994<br>3 118<br>2 008                                                     | 5 036<br>4 520<br>3 630<br>2 832<br>1 990                                                       | 4 814<br>4 320<br>3 470<br>2 708<br>1 902 | 4 510<br>4 134<br>3 322<br>2 592<br>1 820 | 4 244<br>3 808<br>3 058<br>2 886<br>1 676 | 8 928<br>3 520<br>2 830<br>2 206<br>1 550           | 3 292<br>2 948<br>2 372<br>1 848<br>1 298 | 2 818<br>2 520<br>2 030<br>1 580<br>1 110                                                                      |
| 9<br>8<br>7<br>6                | 1 900<br>1 285<br>953<br>737              | $     \begin{array}{r}       1 710 \\       1 157 \\       857 \\       663     \end{array} $ | $     \begin{array}{r}       1  540 \\       1  051 \\       778 \\       603     \end{array} $ | 1 484<br>1 005<br>745<br>577              | 1 420<br>961<br>712<br>558                | 1 306<br>885<br>655<br>509                | 1 206<br>819<br>607<br>472                          | 1 008<br>685<br>507<br>893                | 860<br>585<br>473<br>83                                                                                        |

Dip = .01 of span. Factor of safety of two.

| Tal                              | ble giv                                                                                      | FUSI                                                                               | Cl<br>NG E                                                                         | URI<br>FFEC                                                                                  | REN<br>TS OF                                                                        | TS<br>F CUI                                         | RREN                                                                             | TS.                                                                                          | terial                                              |
|----------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                  | which                                                                                        | will                                                                               | be fus<br>V                                                                        | ed by<br>V. H. P.<br>d                                                                       | a curr<br>REECE, $=\left(\frac{C}{a}\right)^{\frac{2}{3}}$                          | ent of<br>F.R.S.                                    | given                                                                            | streng                                                                                       | th.                                                 |
| es.                              |                                                                                              |                                                                                    |                                                                                    | Diame                                                                                        | ters in                                                                             | inches.                                             |                                                                                  |                                                                                              |                                                     |
| Current in amper                 | Copper,<br>a=10 244.                                                                         | Aluminum,<br>a=7585.                                                               | Platinum,<br>a=5172.                                                               | German silver,<br>a=5 230.                                                                   | Platinoid,<br>a=4 750.                                                              | Iron,<br>. a=3 148.                                 | Tin,<br>a=1 642.                                                                 | Tin-lead alloy,<br>a=1 318.                                                                  | Lead,<br>a=1 379.                                   |
| 1<br>2<br>3<br>4<br>5            | $\begin{array}{c} 0.002\ 1\\ 0.003\ 4\\ 0.004\ 4\\ 0.005\ 3\\ 0.006\ 2\end{array}$           | $\begin{array}{c} 0.002\ 6\\ 0.004\ 1\\ 0.005\ 4\\ 0.006\ 5\\ 0.007\ 6\end{array}$ | 0.003 3<br>0.005 3<br>0.007<br>0.008 4<br>0.009 8                                  | $\begin{array}{c} 0.003 \ 3 \\ 0.005 \ 3 \\ 0.006 \ 9 \\ 0.008 \ 4 \\ 0.009 \ 7 \end{array}$ | 0.003 5<br>0.005 6<br>0.007 4<br>0.008 9<br>0.010 4                                 | 0.004 7<br>0.007 4<br>0.009 7<br>0.011 7<br>0.013 6 | $\begin{array}{c} 0.007\ 2\\ 0.011\ 3\\ 0.014\ 9\\ 0.018\ 1\\ 0.021 \end{array}$ | 0.008 3<br>0.013 2<br>0.017 3<br>0.021<br>0.024 3                                            | 0.008 1<br>0.012 8<br>0.016 8<br>0.020 8<br>0.023 6 |
| 10<br>15<br>20<br>25<br>30       | 0.009 8<br>0.012 9<br>0.015 6<br>0.018 1<br>0.020 5                                          | $\begin{array}{c} 0.012\\ 0.015\ 8\\ 0.019\ 1\\ 0.022\ 2\\ 0.025 \end{array}$      | $\begin{array}{c} 0.015\ 5\\ 0.020\ 3\\ 0.024\ 6\\ 0.028\ 6\\ 0.032\ 3\end{array}$ | $\begin{array}{r} 0.015\ 4\\ 0.020\ 2\\ 0.024\ 5\\ 0.028\ 4\\ 0.032 \end{array}$             | $\begin{array}{c} 0.016\ 4\\ 0.021\ 5\\ 0.026\ 1\\ 0.030\ 3\\ 0.034\ 2 \end{array}$ | 0.021 6<br>0.028 3<br>0.034 3<br>0.039 8<br>0.045   | 0.033 4<br>0.048 7<br>0.052 9<br>0.061 4<br>0.069 4                              | 0.038 6<br>0.050 6<br>0.061 3<br>0.071 1<br>0.080 3                                          | 0.037 5<br>0.049 1<br>0.059 5<br>0.069<br>0.077 9   |
| 35<br>40<br>45<br>50<br>60       | $\begin{array}{c} 0.022\ 7\\ 0.024\ 8\\ 0.026\ 8\\ 0.028\ 8\\ 0.032\ 5\end{array}$           | $\begin{array}{c} 0.027\ 7\\ 6.030\ 3\\ 0.032\ 8\\ 0.035\ 2\\ 0.039\ 7\end{array}$ | 0.035 8<br>0.039 1<br>0.042 3<br>0.045 4<br>0.051 3                                | 0.035 6<br>0.038 8<br>0.042<br>0.045<br>0.050 9                                              | 0.037 9<br>0.041 4<br>0.044 8<br>0.048<br>0.054 2                                   | 0.049 8<br>0.054 5<br>0.058 9<br>0.063 2<br>0.071 4 | 0.076 9<br>0.084<br>0.090 9<br>0.097 5<br>0.110 1                                | 0.089<br>0.097 3<br>0.105 2<br>0.112 9<br>0.127 5                                            | 0.086 4<br>0.094 4<br>0.102 1<br>0.109 5<br>0.123 7 |
| 70<br>80<br>90<br>100<br>120     | $\begin{array}{c} 0.036\\ 0.039\ 4\\ 0.042\ 6\\ 0.045\ 7\\ 0.051\ 6\end{array}$              | $\begin{array}{c} 0.044\\ 0.048\ 1\\ 0.052\\ 0.055\ 8\\ 0.063 \end{array}$         | $\begin{array}{c} 0.056\ 8\\ 0.062\ 1\\ 0.67\ 2\\ 0.072\\ 0.081\ 4 \end{array}$    | 0 056 4<br>0.061 6<br>0.066 7<br>0.071 5<br>0.080 8                                          | 0.060 1<br>0.065 7<br>0.071 1<br>0.076 2<br>0.086 1                                 | 0.079 1<br>0.086 4<br>0.093 5<br>0.100 3<br>0.113 3 | 0.122<br>0.133 4<br>0.144 3<br>0.154 8<br>0.174 8                                | 0.141 3<br>0.154 4<br>0.167 1<br>0.179 2<br>0.202 4                                          | 0.137 1<br>0.149 9<br>0.162 1<br>0.173 9<br>0.196 4 |
| 140<br>160<br>180<br>200<br>2:25 | $\begin{array}{c} 0.057 \ 2 \\ 0.062 \ 5 \\ 0.067 \ 6 \\ 0.072 \ 5 \\ 0.078 \ 4 \end{array}$ | 0.069 8<br>0.076 3<br>0.082 6<br>0.085 6<br>0.095 8                                | $\begin{array}{c} 0.090\ 2\\ 0.098\ 6\\ 0.106\ 6\\ 0.114\ 4\\ 0.123\ 7\end{array}$ | 0.089 5<br>0.097 8<br>0.105 8<br>0.113 5<br>0.122 8                                          | 0.095 4<br>0.104 3<br>0.112 8<br>0.121<br>0.130 9                                   | 0.125 5<br>0.137 2<br>0.148 4<br>0.159 2<br>0.172 2 | 0.193 7<br>0.211 8<br>0.229 1<br>0.245 7<br>0 265 8                              | $\begin{array}{r} 0.224 \ 8 \\ 0.245 \ 2 \\ 0.265 \ 2 \\ 0.284 \ 5 \\ 0.307 \ 7 \end{array}$ | 0.217 6<br>0.237 9<br>0.257 3<br>0.276<br>0.298 6   |
| 250<br>275<br>800                | 0.084 1 0.089 7                                                                              | 0.102 8 0.109 5                                                                    | 0.1327                                                                             | 0.131 7 0.140 4                                                                              | 0.140 4 0.149 7                                                                     | 0.184 8 0.196 9                                     | 0.285 1 0.303 8                                                                  | 0 330 1<br>0.351 8                                                                           | 0.320 8 0.341 7                                     |

.

| (Continued.) |
|--------------|
| CURRENTS     |
| OF           |
| EFFECTS      |
| FUSING       |

Table showing the amperes required to fuse wires of various sizes and materials.

| Lead,<br>a=1 379.              | 31.2<br>22.32<br>14.5<br>9.419<br>6.461                                                      | 4.499<br>3.33<br>2.483<br>1.904<br>1.548                                                               |
|--------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Tin-lead<br>alloy,<br>a=1 318. | 29.82<br>21.34<br>13.86<br>9.002<br>6.175                                                    | $\begin{array}{c} 4.3\\ 3.183\\ 2.373\\ 1.82\\ 1.479\end{array}$                                       |
| Tin,<br>a=1 642.               | 87.15<br>26.58<br>17.27<br>11.22<br>7.692                                                    | 5.357<br>5.357<br>3.965<br>2.956<br>1.843                                                              |
| Iron,<br>a=3 148.              | 71.22<br>50.96<br>33.1<br>21.5<br>14.75                                                      | 10.27<br>7.602<br>5.667<br>4.347<br>3.533                                                              |
| Platinoid,<br>a=4 750.         | 107.5<br>76.9<br>32.44<br>22.25                                                              | 15.5<br>11.47<br>8.552<br>6.559<br>5.33                                                                |
| German<br>silver,<br>a=5 230.  | 118.3<br>84.68<br>54.99<br>35.72<br>24.5                                                     | 17.06<br>12.63<br>9.416<br>7.222<br>5.87                                                               |
| Platinum,<br>a=5 172.          | 117.<br>83.73<br>54.37<br>85.33<br>24.23                                                     | 16.88<br>12.49<br>9.311<br>7.142<br>5.805                                                              |
| Aluminum,<br>a=7 585.          | 171.6<br>122.8<br>79.75<br>51.18<br>85.53                                                    | 24.75<br>18.32<br>13.66<br>10.47<br>8.512                                                              |
| Copper,<br>a=10 244.           | 231.8<br>165.8<br>107.7<br>69.97<br>48.                                                      | 33.43<br>33.43<br>18.44<br>14.15<br>11.5                                                               |
| d <sup>28</sup> .              | $\begin{array}{c} 0.022\ 627\\ 0.016\ 191\\ 0.010\ 516\\ 0.006\ 831\\ 0.004\ 685\end{array}$ | $\begin{array}{c} 0.003 \ 263 \\ 0.002 \ 415 \\ 0.001 \ 801 \\ 0.001 \ 381 \\ 0.001 \ 122 \end{array}$ |
| Diam-<br>eter,<br>d.           | 0.08<br>0.064<br>0.048<br>0.036<br>0.028                                                     | $\begin{array}{c} 0.022\\ 0.018\\ 0.0148\\ 0.0124\\ 0.0124\end{array}$                                 |
| Numbers, G. B. S. G            | 114<br>220<br>220<br>220                                                                     | 32888                                                                                                  |

## JOHN A. ROEBLING'S SONS CO.

41

less than one inch in length between the terminals to which it is fixed so as to prevent the cooling

effect of the terminals.

### HEATING EFFECTS OF CURRENTS.

A REPORT read before the Edison Convention, at Niagara Falls, August, 1889, by A. E. Kennelly, gives complete formulæ and tables based on experimental data, showing the heating effects of electric currents. This report was published in the *Electrical World*, beginning with the edition of November 23, 1889.

The tables in this book are taken from curves constructed from data given in the above report.

The table page 43 gives the rules of the various insurance companies, together with one column giving the current whose double would cause a rise of  $40^{\circ}$  C. This is the safe carrying capacity recommended in Kennelly's report.

The table page 44 gives the diameters of various wires and the current they will carry with a specified rise in temperature. The wires are insulated, and the conditions are similar to those met with in house wiring in mouldings or conduits.

The table page 45 is computed for bare wires suspended indoors, and gives the current carried with the corresponding rise in temperature.

The table page 46 is computed for outdoor wires, not insulated.

In these tables all wires are solid.

Insulation increases the current a wire will carry with a given rise in temperature, because the radiating surface is increased, and for the same reason a strand will carry a larger current than a solid wire.

One square inch of bright copper radiates .003 9 watts per degree Centigrade rise in temperature, and one square inch of blackened copper, .009 watts, under the same conditions. Convection seems to be dependent only on length, and may be taken at .053 watts per foot per degree Centigrade rise.

### HEATING EFFECTS OF CURRENTS.

Insurance rules for carrying capacity of wires.

| B. & S. G. | ie double of<br>ill cause a rise    | clectric Light<br>on.    | Nationa<br>of Fire<br>wri | l Board<br>Under-<br>ters. | Factory<br>nsurance               | ire Insurance<br>and Board<br>rules of       |
|------------|-------------------------------------|--------------------------|---------------------------|----------------------------|-----------------------------------|----------------------------------------------|
| Numbers, ] | Current, th<br>which w<br>of 72° F. | National F<br>associatio | Con-<br>cealed<br>work,   | Open<br>work.              | Associated<br>Mutual I<br>company | Phoenix Fi<br>company<br>of Trade<br>England |
| 0 000      | 174                                 | 175                      | 218                       | 812                        | 175                               |                                              |
| 000        | 146                                 | 145                      | 181                       | 262                        | 145                               |                                              |
| 00         | 123                                 | 120                      | 150                       | 220                        | 120                               | 105                                          |
| 0 .        | 103                                 | 100                      | 125                       | 185                        | 100                               | 83                                           |
| 1          | 88                                  | 95                       | 105                       | 156                        | 85                                | 66                                           |
| 2          | 73                                  | 70                       | 88                        | 131                        | 70                                | 52                                           |
| 3          | 61                                  | 60                       | 75                        | 110                        | 60                                | 41                                           |
| 4          | 52                                  | 50                       | 63                        | 92                         | 50                                | 33                                           |
| 5          | 43                                  | 45                       | 53                        | 77                         | 45                                | 26                                           |
| 6          | 36                                  | 35                       | 45                        | 65                         | 35                                | 21                                           |
| 7          | 31                                  | 30                       |                           |                            | 30                                | 16                                           |
| 8          | 26                                  | 25                       | 33                        | 46                         | 25                                | 18                                           |
| 10         | 18                                  | 20                       | 25                        | 32                         | 20                                | 8                                            |
| 12         | 13                                  | 15                       | 17                        | 23                         | 15                                | . 5                                          |
| 14         | 9                                   | 10                       | 12                        | 16                         | 10                                | 8                                            |
| 16         | 6                                   | 5                        | 6                         | 8                          | 5                                 | 2                                            |
| 18         | 5                                   |                          | 3                         | 5                          | 8                                 | 1                                            |

## HEATING EFFECTS OF CURRENTS.-(Cont.)

### Carrying capacity of insulated wires in mouldings.

(Kennelly's formula.)

|            |     | Rise | in tem | peratu     | re in do   | grees (    | Centigra   | de.        |            |
|------------|-----|------|--------|------------|------------|------------|------------|------------|------------|
| res.       | 50  | 10°  | 15°    | 20°        | 30°        | 40°        | 50°        | 60°        | 700        |
| Ampe       |     |      | Dia    | meters     | of wire    | s in mi    | ils.       |            | 3          |
| 300        |     |      |        |            | 446        | 411        | 386        | 367        | 354        |
| 280        |     |      |        |            | 427        | 393        | 369        | 350        | 338        |
| 260        |     |      |        | 450        | 409        | 375        | 852        | 333        | 321        |
| 240<br>220 |     |      | 436    | 430<br>408 | 390<br>370 | 356<br>337 | 333<br>315 | 315<br>298 | 304<br>285 |
| 200        |     | 448  | 414    | 386        | 350        | 317        | 295        | 280        | 268        |
| 190        |     | 437  | 403    | 875        | 339        | 308        | 286        | 270        | 258        |
| 180        |     | 425  | 391    | 364        | 328        | 298        | 277        | 260        | 249        |
| 170        |     | 411  | 378    | 352        | 317        | 287        | 266        | 250        | 239        |
| 160        |     | 398  | 364    | 340        | 305        | 276        | 256        | 241        | 229        |
| 150        | 445 | 383  | 351    | 326        | 293        | 265        | 244        | 230        | 218        |
| 140        | 431 | 370  | 338    | 312        | 281        | 253        | 232        | 220        | 206        |
| 130        | 417 | 354  | 322    | · 300      | 269        | 240        | 220        | 208        | 195        |
| 120        | 400 | 339  | 308    | 285        | 255        | 228        | 208        | 195        | 182        |
| 110        | 383 | 322  | 292    | 270        | 240        | 214        | 195        | 182        | 170        |
| 100        | 362 | 302  | 276    | 253        | 223        | 200        | 182        | 168        | 158        |
| 90         | 343 | 284  | 259    | 237        | 208        | 185        | 168        | 154        | 143        |
| 80         | 322 | 264  | 240    | 218        | 192        | 169        | 153        | 139        | 130        |
| 70         | 300 | 242  | 220    | 198        | 174        | 152        | 139        | 123        | 116        |
| 00         | 275 | 220  | 195    | 170        | 199        | 135        | 122        | 108        | 101        |
| 50         | 250 | 195  | 175    | 152        | 132        | 118        | 104        | 91         | 86         |
| 40         | 217 | 169  | 144    | 128        | 110        | 95         | 85         | 75         | 70         |
| 30         | 178 | 136  | 115    | 100        | 85         | 73         | 66         | 58         | 54         |
| 20         | 132 | 100  | 71     | 69         | 59         | 50         | 45         | 40         | 37         |
| 10         | 18  | 98   | 42     | 30         | 30         | *****      |            |            |            |

## HEATING EFFECTS OF CURRENTS.-(Cont.) Bare copper in still air.

|                                   | 1000                            | Rise i                          | n tempe                         | rature,                         | degrees (                                                                                             | entigra                         | de.                             |                                 |
|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                                   | 1                               | 00                              | 2                               | 00                              | 4                                                                                                     | 00                              | 8                               | 00                              |
| peres.                            | Bright.                         | Black.                          | Bright.                         | Black.                          | Bright.                                                                                               | Black.                          | Bright.                         | Black.                          |
| Am                                |                                 |                                 | Diamet                          | ers of w                        | vires in n                                                                                            | nils.                           |                                 |                                 |
| 1 000<br>950<br>900<br>850<br>800 |                                 |                                 |                                 |                                 | <br>1 000                                                                                             | 968<br>930<br>893<br>858<br>823 | 911<br>878<br>844<br>809<br>771 | 750<br>723<br>695<br>666<br>638 |
| 750<br>700<br>650<br>600<br>575   |                                 | ·····<br>·····<br>····          |                                 | 960<br>910<br>858<br>833        | 950<br>900<br>850<br>800<br>775                                                                       | 785<br>748<br>708<br>668<br>648 | 734<br>696<br>660<br>621<br>603 | 610<br>580<br>550<br>518<br>503 |
| 550<br>525<br>500<br>475<br>450   |                                 | 995<br>978<br>960<br>925<br>895 | 980<br>948<br>913<br>880<br>843 | 808<br>780<br>751<br>723<br>696 | 750<br>725<br>700<br>675<br>648                                                                       | 628<br>607<br>584<br>563<br>541 | 583<br>563<br>543<br>523<br>501 | 488<br>461<br>455<br>439<br>421 |
| 425<br>400<br>375<br>350<br>325   | 1 000<br>950<br>900<br>850      | 860<br>820<br>783<br>745<br>708 | 808<br>770<br>731<br>690<br>654 | 669<br>641<br>612<br>581<br>550 | 620<br>592<br>564<br>536<br>506                                                                       | 520<br>498<br>475<br>452<br>428 | 479<br>457<br>435<br>413<br>390 | 406<br>387<br>369<br>350<br>331 |
| 800<br>275<br>250<br>225<br>200   | 800<br>750<br>696<br>642<br>586 | 668<br>628<br>586<br>545<br>500 | 615<br>575<br>534<br>494<br>453 | 519<br>487<br>453<br>419<br>384 | 475<br>444<br>412<br>379<br>345                                                                       | 403<br>377<br>351<br>323<br>296 | 366<br>341<br>317<br>291<br>265 | 812<br>292<br>272<br>252<br>229 |
| 175<br>150<br>125<br>100<br>90    | 530<br>470<br>408<br>343<br>315 | 454<br>404<br>352<br>300<br>272 | 406<br>360<br>308<br>258<br>237 | 349<br>311<br>270<br>226<br>208 | 810<br>274<br>235<br>195<br>178                                                                       | 266<br>226<br>206<br>170<br>158 | 239<br>210<br>182<br>150<br>137 | 208<br>194<br>161<br>135<br>123 |
| 80<br>70<br>60<br>50<br>40        | 286<br>259<br>226<br>191<br>156 | 246<br>220<br>194<br>167<br>140 | 214<br>190<br>167<br>142<br>117 | 196<br>170<br>150<br>130<br>108 | $     \begin{array}{r}       161 \\       143 \\       125 \\       106 \\       86     \end{array} $ | 143<br>127<br>112<br>95<br>78   | 124<br>110<br>97<br>82<br>68    | 112<br>100<br>87<br>74<br>61    |
| 30<br>20<br>10                    | 120<br>82<br>40                 | 111<br>76<br>38                 | 90<br>63<br>37                  | 85<br>60<br>35                  | 66<br>45<br>30                                                                                        | 60<br>44<br>28                  | 54<br>40<br>26                  | 48<br>36<br>24                  |

| HE                                | ATIN                            | G EF:<br>Bare c                 | FECTS<br>opper s                | SOF (                             | CURRI<br>ed outd                | ENTS.<br>loors.                   | -(Co                                | nt.)                            |
|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|-------------------------------------|---------------------------------|
|                                   |                                 | Rise i                          | n tempe                         | erature, d                        | legrees (                       | Centigra                          | de.                                 |                                 |
|                                   | 5                               | ,o                              | 1                               | 00                                | 2                               | ეი                                | 4                                   | )0                              |
| eres.                             | Bright.                         | Black.                          | Bright.                         | Black.                            | Bright.                         | Black.                            | Bright.                             | Black.                          |
| Amj                               |                                 |                                 | Diamet                          | ers of w                          | ires in r                       | nils.                             |                                     |                                 |
| 000<br>950<br>900<br>850<br>800   | ·····                           |                                 | 962<br>928<br>894<br>868<br>839 | 932<br>897<br>865<br>843<br>810   | 771<br>744<br>715<br>689<br>672 | $745 \\ 720 \\ 692 \\ 665 \\ 649$ | 620<br>595<br>574<br>550<br>537     | 594<br>572<br>552<br>530<br>512 |
| 750<br>700<br>650<br>600<br>575   | 963<br>916<br>869<br>845        | 975<br>933<br>889<br>837<br>813 | 804<br>767<br>729<br>690<br>671 | 775<br>739<br>708<br>665<br>647   | 643<br>613<br>582<br>554<br>538 | 6:20<br>591<br>561<br>582<br>517  | 515<br>491<br>467<br>442<br>429     | 495<br>472<br>449<br>426<br>414 |
| $550 \\ 525 \\ 500 \\ 475 \\ 450$ | 820<br>795<br>770<br>745<br>719 | 789<br>764<br>740<br>719<br>693 | 650<br>630<br>610<br>589<br>568 | 627<br>609<br>589<br>569<br>548   | 522<br>506<br>489<br>473<br>453 | 501<br>487<br>470<br>455<br>438   | 417<br>404<br>390<br>377<br>363     | 402<br>389<br>376<br>363<br>350 |
| 425<br>400<br>375<br>350<br>325   | 690<br>661<br>632<br>601<br>571 |                                 | 546<br>524<br>502<br>478<br>453 | $526 \\ 504 \\ 484 \\ 462 \\ 439$ | 436<br>418<br>399<br>380<br>362 | 422<br>406<br>377<br>360<br>342   | 349<br>334<br>319<br>304<br>289     | 336<br>322<br>309<br>295<br>279 |
| 300<br>275<br>250<br>225<br>200   | 540<br>509<br>477<br>445<br>410 | 522<br>492<br>460<br>430<br>399 | 428<br>404<br>378<br>351<br>324 | 415<br>392<br>367<br>343<br>316   | 342<br>321<br>300<br>280<br>259 | 326<br>309<br>290<br>270<br>250   | 273<br>257<br>240<br>223<br>205     | 264<br>249<br>222<br>215<br>198 |
| $175 \\ 150 \\ 125 \\ 100 \\ 90$  | 373<br>334<br>295<br>254<br>236 | 365<br>329<br>290<br>248<br>230 | 296<br>267<br>235<br>202<br>186 | 289<br>258<br>226<br>193<br>178   | 235<br>211<br>185<br>157<br>145 | $227 \\ 202 \\ 177 \\ 152 \\ 140$ | 186     166     145     123     114 | 180<br>161<br>144<br>120<br>111 |
| 80<br>70<br>60<br>50<br>40        | 216<br>198<br>177<br>155<br>130 | 212<br>192<br>170<br>147<br>124 | 171<br>155<br>137<br>119<br>100 | 164<br>150<br>132<br>115<br>96    | 132<br>120<br>107<br>92<br>77   | $128 \\ 116 \\ 104 \\ 87 \\ 73$   | 104<br>94<br>83<br>72<br>62         | 102<br>91<br>80<br>70<br>59     |
| 30<br>20<br>10                    | 104<br>73<br>40                 | 100<br>70<br>38                 | 78<br>54<br>27                  | 75<br>53<br>26                    | 61<br>43<br>20                  | 58<br>40<br>18                    | 50<br>84<br>16                      | 45<br>30<br>14                  |

# SPANS.

THE formulæ used in calculating these tables of lengths and strains in spans of wire are those of a catenary of small deflection. They are given in Weisbach's Mechanics of Engineering, page 297. (seventh American edition, translated by Eckley B. Coxe, A. M.)

In these tables the horizontal strain at the center of the span is given. The strain at any other point equals the strain at the center plus the weight of a length of the wire equal to the perpendicular distance of that point from the lowest point of the wire in the span. For ordinary spans this is negligible. For any given wire the longest possible span is one where the deflection is about one-third of the span.

The effects of temperature on the strains of wires in spans is at first sight so great as to render the other considerations of little importance. The table, page 53, is calculated on the assumption that the supports of the spans are perfectly rigid under all conditions of strain and that the wire is inelastic. This is never true in practice. The changes in direction in a pole line afford a chance for the strains, due to a shortening of the wire by a fall in temperature, to be taken up by a bending of the supports.

If the elastic limit of hard-drawn copper wire of 60 000 pounds breaking strain be taken at 20 000 pounds, then S will equal 20 000 divided by 3.85, the weight of a piece of copper one foot long and one square inch in section. This makes S equal 5 195. Looking at the table of values of S, page 50, this value for a span of 130 feet comes between a deflection of .003 and .004. In the same way the allowable deflection for any other span of hard-drawn copper could be found or for any other material by substituting the proper terms for the elastic limit and the weight per foot given above.

The following gives the practice of some of the telegraph and telephone companies in their line construction:

## SPECIFICATIONS FOR STANDARD CONSTRUCTION OF HARD-DRAWN COPPER.

| se cit.                  |                                               |                                | Spans                            | in feet.                     |                                                                  |                                        |
|--------------------------|-----------------------------------------------|--------------------------------|----------------------------------|------------------------------|------------------------------------------------------------------|----------------------------------------|
| degree                   | 75                                            | 100                            | 115                              | 130                          | 150                                                              | 200                                    |
| Temp<br>in<br>Fal        |                                               |                                | Sag in                           | inches.                      | -                                                                |                                        |
| $-30 \\ -10 \\ 10 \\ 30$ | $1\\1\frac{1}{4}\\1\frac{1}{2}\\1\frac{3}{4}$ | 2<br>21/3<br>25/8<br>3         | $2^{1/2}$<br>3<br>$3^{1/2}$<br>4 | 38/8<br>33/4<br>43/8<br>51/8 | 4 <sup>1</sup> /2<br>5<br>5 <sup>8</sup> /4<br>6 <sup>3</sup> /4 | 8<br>9<br>10 <sup>1</sup> /4<br>12     |
| 60<br>80<br>100          | 21/2<br>31/8<br>41/8                          | 41/4<br>5 <sup>3</sup> /8<br>7 | 5½<br>7<br>9                     | 7<br>85/8<br>11              | 9<br>11 <sup>1</sup> / <sub>4</sub><br>14                        | $15^{8}/8$<br>$18^{3}/4$<br>$22^{1}/4$ |

For spans between 400 and 600 feet, the dip shall be 1-40th of the span.

For spans between 600 and 1 000 feet, the dip shall be 1-30th of the span.

Another company uses 40 poles to the mile, and in the East allows three-inch dip at center of spans. In the West, where the variation of temperature is greater, 10 inches dip is allowed in summer, and 8 inches in the winter. This construction applies to both copper and iron wire, and has been found by actual experience to give satisfactory results.

The following formulæ were used in calculating the tables:

(1)  $S \times W = horizontal strain on wire at center of span$ 

 $(2) \qquad S=\frac{y^2}{2x}+\frac{x}{6}.$ 

(3) 
$$l = y \left[ 1 + \frac{3}{3} \left( \frac{x}{y} \right)^2 \right].$$

(4) 
$$x = 3S - \sqrt{9S^2 - 3y^2}$$
.

(5) 
$$\mathbf{x} = \sqrt{\frac{3 \, \mathrm{y} \, 1 - 3 \, \mathrm{y}^{\, \mathrm{s}}}{2.}}$$

#### JOHN A. ROEBLING'S SONS CO.

In these formulæ

y = one-half span.

l = one-half length of wire in span.

x = deflection at center in same units as y.

w = weight per foot of wire.

Suppose we have a span of 200 feet of hard-drawn copper wire weighing one pound to 10 feet, and a deflection of two feet or .01 of the span.

(2)

$$\mathbf{S} = \left(\frac{100}{2}\right)^{\mathbf{x}} + \frac{\mathbf{s}}{\mathbf{s}}.$$
$$= 2\ 500.33\ +.$$

= 100.026 6 +. 21 = 200.053 +.

= 2

(3)

(4)

 $x = \int \frac{30\ 008 - 30\ 000}{2}$ 

 $\mathbf{x} = 7501 - \sqrt{56\ 265\ 001 - 30\ 000}$ 

 $1 = 100 \left[ 1 + \frac{2}{3} \left( \frac{2}{100} \right)^3 \right].$ 

In calculating the table, page 53, the deflection of the line was determined at  $-10^{\circ}$  F. by formula 4, the value of S being 30 000 divided by 3.85 or 7 792. For the other temperatures the length of the wire was calculated from the following formula:

Length =  $1(1 + .000\ 009\ 3\ t)$ .

Here t is the difference in temperature in degrees Fahrenheit.

By formula 5 the deflection corresponding to the new length was found.

The coëfficients of linear expansion for each degree Fahrenheit are as follows:

Copper, .000 009 3. Iron, .000 006 8. Lead, .000 016.

H. T. Cory

|   | -                                                                                                          |                                                                                               |                                                                                             | Deflec                                                                      | tions in de                                                                  | cimal part                                                                                           | s of spans.                                                                                   |                                                                                        | ľ                                                                                       |                                                                                             |                                                           |
|---|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| - | 100.                                                                                                       | .002                                                                                          | .003                                                                                        | .004                                                                        | .005                                                                         | 900.                                                                                                 | 200.                                                                                          | .008                                                                                   | 600.                                                                                    | .010                                                                                        | .015                                                      |
| 1 |                                                                                                            |                                                                                               |                                                                                             |                                                                             | Mu                                                                           | ltipliers.                                                                                           |                                                                                               |                                                                                        |                                                                                         |                                                                                             |                                                           |
|   | 1 250.001<br>2 500.003<br>3 750.005<br>5 000.006<br>6 250.008                                              | 625.003<br>1.250.006<br>1.875.01<br>2.500.013<br>3.125.016                                    | 416.671<br>833.343<br>833.343<br>1 250.015<br>1 666.686<br>2 083.358                        | 312.506<br>625.013<br>937.52<br>1 250.026<br>1 562.533                      | 250.008<br>500.016<br>750.025<br>1 000.033<br>1 250.041                      | 208.343<br>416.686<br>625.03<br>833.373<br>833.373<br>1 041.716                                      | 178.588<br>357.166<br>585.749<br>714.332<br>892.915                                           | 156.263<br>312.526<br>468.79<br>625.053<br>781.316                                     | 138.908<br>277.807<br>416.711<br>555.615<br>694.519                                     | 125.016<br>250.083<br>375.05<br>500.066<br>625.083                                          | 83.358<br>166.716<br>250.075<br>333.433<br>333.433        |
|   | 7 500.01<br>8 750.011<br>10 000.013<br>11 250.015<br>12 500.016                                            | $\begin{array}{c} 3\ 750.02\\ 4\ 375.023\\ 5\ 000.026\\ 6\ 825.03\\ 6\ 250.033\\ \end{array}$ | 2 500.08<br>2 916.701<br>3 333.373<br>3 750.045<br>4 166.716                                | $\begin{array}{c}1875.04\\2187.546\\2500.053\\2812.56\\3125.066\end{array}$ | $\begin{array}{c}1500.05\\1750.058\\2000.066\\2250.075\\2500.083\end{array}$ | $\begin{array}{c}1250.06\\1458.403\\1666.746\\1875.09\\2083.433\end{array}$                          | $\begin{array}{c}1\ 071.498\\1\ 250.081\\1\ 428.664\\1\ 607.247\\1\ 785.83\end{array}$        | 937.58<br>1 098.843<br>1 250.106<br>1 406.37<br>1 562.633                              | $\begin{array}{c} 833.423\\ 972.327\\ 1\ 1111.231\\ 1\ 250.135\\ 1\ 389.088\end{array}$ | $\begin{array}{c} 750.1\\ 875.116\\ 1\ 000.133\\ 1\ 125.15\\ 1\ 250.166\end{array}$         | 500.15<br>583.508<br>666.866<br>750.225<br>833.583        |
|   | $\begin{array}{c} 18 \ 750.018 \\ 15 \ 000.02 \\ 16 \ 250.021 \\ 17 \ 500.023 \\ 18 \ 750.025 \end{array}$ | 6 875.036<br>7 500.04<br>8 125.043<br>8 750.046<br>9 375.05                                   | $\begin{array}{c} 4\ 583.388\\ 5\ 000.06\\ 5\ 416.731\\ 5\ 833.403\\ 6\ 250.075\end{array}$ | 8 437.573<br>8 750.08<br>4 3052.586<br>4 375.093<br>4 687.6                 | 2 750 091<br>3 250.108<br>3 250.108<br>3 500.116<br>3 500.116<br>8 750.125   | $\begin{array}{c} 2 \ 291.776 \\ 2 \ 500.12 \\ 2 \ 708.463 \\ 2 \ 916.806 \\ 3 \ 125.15 \end{array}$ | $\begin{array}{c}1 \ 964.414\\2 \ 142 \ 997\\2 \ 321.58\\2 \ 500.163\\2 \ 500.163\end{array}$ | $\begin{array}{c}1\ 718.896\\1\ 875.16\\2\ 031.423\\2\ 187.686\\2\ 2343.95\end{array}$ | $\begin{array}{c}1\ 527,942\\1\ 666.846\\1\ 805.75\\1\ 944.654\\2\ 083.558\end{array}$  | $\begin{array}{c}1 & 875.183\\1 & 500 & 2\\1 & 625.216\\1 & 750.233\\1 & 875.25\end{array}$ | 916.941<br>1 000.3<br>1 083.658<br>1 167.016<br>1 250.375 |
|   | 20 000.026<br>21 250.028<br>22 500.03<br>28 750.031<br>26 000.033                                          | 10 000.053<br>10 625.056<br>11 250.06<br>11 875.063<br>12 500.066                             | 6 666.746<br>7 083.418<br>7 500.09<br>7 916.761<br>8 333.433                                | 5 000.106<br>5 312.613<br>5 625.12<br>5 987.626<br>6 250.133                | 4 000.133<br>4 250.141<br>4 500.15<br>4 750.158<br>5 000.166                 | 3 333.493<br>3 541.836<br>3 750.18<br>3 958.523<br>4 166.866                                         | 2 857.329<br>3 035.912<br>8 214.495<br>8 393.078<br>8 571 661                                 | 2 500.213<br>2 656.476<br>2 812.74<br>2 969.003<br>8 195.968                           | 2 222.462<br>2 361.866<br>2 500.269<br>2 639.173<br>2 639.173                           | 2 000.266<br>2 125.283<br>2 250.3<br>2 375.316<br>500 333                                   | 1 133.733<br>1 417.091<br>1 500.45<br>1 583.808           |

# JOHN A. ROEBLING'S SONS CO.

| decimal parts of spans. | fultipliers. | 77.852         25.068         22.818         20.036         11.577         16.7           55.76         00.106         44.677         41.866         38.607         38.321         38.73         36.7           55.76         56.446         62.8         80.407         88.246         38.607         38.321         38.35           1.411         10.0688         49.467         41.866         62.8         56.017         38.32         38.017         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35         38.35 | 77.116         150.5         136.918         125.6         116.084         107.082         100.7           44.909         175.588         136.516         174.658         135.732         136.916         177.83           45.909         177.558         135.575         135.732         137.91         137.91           45.801         125.55         205.666         182.671         167.466         154.712         138.79         138.13           45.871         255.75         205.687         235.538         236.546         151.712         138.71           45.871         255.75         236.538         138.348         178.7728         157.758         157.758         157.758         157.758         157.758         156.738         157.778         157.758         157.758         157.758         157.758         157.758         157.758         157.758         155.758         157.758         155.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758         157.758 <t< th=""><th>6.88         275.916         291.086         290.296         212.73         197.711         184.7           4.326         301.         273.81         51.08         290.296         201.54         201.64         201.54           4.326         301.         273.81         51.21         223.24         201.64         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         <td< th=""><th>16.64         401.333         365.108         334.983         309.425         287.58         268.6           73.407         426.416         387.921         555.866         238.764         256.42         256.42           10.349         451.5         410.74         376.8         348.108         323.528         302.2</th></td<></th></t<> | 6.88         275.916         291.086         290.296         212.73         197.711         184.7           4.326         301.         273.81         51.08         290.296         201.54         201.64         201.54           4.326         301.         273.81         51.21         223.24         201.64         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54         201.54 <td< th=""><th>16.64         401.333         365.108         334.983         309.425         287.58         268.6           73.407         426.416         387.921         555.866         238.764         256.42         256.42           10.349         451.5         410.74         376.8         348.108         323.528         302.2</th></td<> | 16.64         401.333         365.108         334.983         309.425         287.58         268.6           73.407         426.416         387.921         555.866         238.764         256.42         256.42           10.349         451.5         410.74         376.8         348.108         323.528         302.2 |
|-------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| flections in c          | W            | 31.316 2<br>62.633 5<br>93.950 8<br>125.266 11<br>156.583 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 187.900 16<br>219.216 19<br>250.533 22<br>281.850 25<br>313.166 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 344.483         30           375.800         33           407.116         36           438.433         33           458.433         38           469.750         41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 501.066 44<br>532.383 47<br>563.7 50                                                                                                                                                                                                                                                                                        |
| .035                    |              | 35.772<br>71.545<br>107.317<br>143.09<br>178.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 214.635<br>250.408<br>2260.408<br>321.953<br>357.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 393.498<br>393.498<br>429.271<br>465.044<br>500.816<br>536.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 572.361<br>608.134<br>643.907                                                                                                                                                                                                                                                                                               |
| 030                     |              | 41.716<br>83.433<br>125.15<br>166.866<br>208.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 250.3<br>292.016<br>333.733<br>375.45<br>417.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 458.883<br>500.6<br>542.316<br>542.316<br>584.083<br>625.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 667.466<br>709.183<br>750.9                                                                                                                                                                                                                                                                                                 |
| .025                    |              | 50.041<br>100.083<br>150.125<br>200.166<br>250.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300.25<br>850.291<br>400.333<br>450.375<br>500.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 550.458<br>600.5<br>650.541<br>700.583<br>750.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 800.666<br>850.708<br>900.75                                                                                                                                                                                                                                                                                                |
| .020                    |              | 62.533<br>125.066<br>187.6<br>250.133<br>312.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 375.2<br>437.733<br>500.266<br>562.8<br>625 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 687.866<br>750.4<br>812.933<br>875.466<br>938.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 000.533<br>1 063.066<br>1 125.6                                                                                                                                                                                                                                                                                           |

JOHN A. ROEBLING'S SONS CO.

# TEMPERATURE EFFECTS IN SPANS.

|                   |      | Т   | empera | ature i | n degr  | ees Fa | hrenhe | eit. |      |
|-------------------|------|-----|--------|---------|---------|--------|--------|------|------|
| Spans in<br>feet. | -10° | 30° | 40°    | 50°     | 60°     | 700    | 800    | 900  | 1000 |
|                   |      |     |        | Deflect | ions ir | inche  | es.    |      |      |
| 50                | .5   | 6   | 8      | 9       | 9       | 10     | 11     | 11   | 12   |
| 60                | .7   | 8   | 10     | 11      | 11      | 12     | 13     | 13   | 14   |
| 70                | 1.   | 10  | 11     | 12      | 13      | 14     | 15     | 15   | 17   |
| 80                | 1.2  | 11  | 13     | 14      | 15      | 16     | 17     | 18   | 19   |
| 90                | 1.6  | 13  | 14     | 16      | 17      | 18     | • 19   | 20   | 21   |
| 100               | 1.9  | 14  | 16     | 17      | 19      | 20     | 21     | 23   | 24   |
| 110               | 2.3  | 16  | 18     | 19      | 21      | 22     | 24     | 25   | 26   |
| 120               | 2.8  | 17  | 19     | 21      | 22      | 24     | 26     | 27   | 28   |
| 130               | 3.2  | 19  | 21     | 23      | 25      | 26     | 28     | 29   | 31   |
| 140               | 3.7  | 20  | 23     | 25      | 27      | 28     | 30     | 82   | 33   |
| 1:0               | 4.3  | 22  | 24     | 26      | 28      | 30     | 82     | 34   | 36   |
| 160               | 4.9  | 23  | 26     | 28      | 30      | 32     | 34     | 36   | 38   |
| 170               | 5.5  | 25  | 28     | 30      | 82      | 35     | 37     | 38   | 40   |
| 180               | 6.2  | 26  | 29     | 32      | 84      | 87     | 39     | 41   | 43   |
| 190               | 7.   | 28  | 31     | 84      | 36      | 39     | 41     | 43   | 45   |
| 200               | 7.7  | 81  | 33     | 36      | 38      | 41     | 43     | 45   | 48   |

Hard-drawn copper wire, 60 000 pounds strength per square inch.

Strain at -10° F., 30 000 pounds per square inch.

| 0         20003         20003         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         20004         200 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .010         .015         .020         .025         .080         .035         .040         .045         .060         .060         .070         .080           Lengths of wires.         .016         .025         .020         .035         .040         .045         .050         .060         .070         .080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deflections in decimal parts of spans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

JOHN A. ROEBLING'S SONS CO.

| sctions in decimal parts of spans. | 0 .140 .150 .160 .170 .180 .190 | Lengths of wires. | 5         10.522         10.6         10.682         10.77         10.864         10.962           01         21.045         21.2         21.365         21.925         21.925 | 52 31.568 31.8 32.048 32.312 32.592 32.888<br>02 42.09 42.4 42.78 43.082 43.456 43.85<br>03 20 20 20 20 20 20 20 20 20 20 20 20 20 | 00 07:010 00:00 01:00 01:00 07:00 07:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:000 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 0 | 54 73.658 74.2 74.778 75.394 76.048 76.738 | 05 84.181 84.8 85.461 86.165 86.912 87.701 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 67         115.749         116.6         117.509         118.477         119.504         120.589 | 08 126.272 127.2 128.192 129.248 130.368 131.552 | 58 136.794 137.8 138.874 140.018 141.232 142.514 | 6 157.84 159. 160.24 161.56 162.96 164.44 | 1 168.362 169.6 170.922 172.33 173.824 175.402 | 61 178.885 180.2 181.605 183.101 184.688 186.365 | 12 189.408 190.8 192.288 193.872 195.552 197.328 | 62   199.93   201.4   202.97   204.642   206.29 |
|------------------------------------|---------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| Defle                              | .120 .130                       |                   | 10.384 10.4<br>20.768 20.9                                                                                                                                                     | 81.152 81.3<br>41.536 41.8                                                                                                         | 07.70 76.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.688 73.1                                | 83.072 83.6                                | 98.456 94.0<br>103.84 104.5                          | 114.224 114.9                                                                                    | 124.608 125.4                                    | 134.992 135.8                                    | 155.76 156.7                              | 166.144 167.2                                  | 176.528 177.6                                    | 186.912 188.1                                    | 197.296 198.0                                   |
|                                    | .110                            |                   | 10.322                                                                                                                                                                         | 30.968<br>41.29                                                                                                                    | 000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72.258                                     | 82.581                                     | 92.904<br>103.226                                    | 113.549                                                                                          | 123 872                                          | 134.194                                          | 154.84                                    | 165.162                                        | 175.485                                          | 185.808                                          | 196.13                                          |
|                                    | .100                            |                   | 10.266<br>20.533                                                                                                                                                               | 30.8<br>41.066                                                                                                                     | 000.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 998.12                                     | 82.133                                     | 92.4<br>102.666                                      | 112.933                                                                                          | 123.2                                            | 133.466                                          | 154.                                      | 164.266                                        | 174.533                                          | 184.8                                            | 190.066                                         |
|                                    | 060*                            |                   | 10.216 20.432                                                                                                                                                                  | 30.648<br>40.864                                                                                                                   | 00.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.512                                     | 81.728                                     | 91.944<br>102.16                                     | 112.376                                                                                          | 122.592                                          | 132.808                                          | 153.24                                    | 163.456                                        | 173.672                                          | 183.888                                          | 194.104                                         |
|                                    | ni an<br>.19                    | apa               | 20                                                                                                                                                                             | 843                                                                                                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                        | 80                                         | 1000                                                 | 110                                                                                              | 120                                              | 130                                              | 150                                       | 160                                            | 170                                              | 180                                              | 190                                             |

### WEATHERPROOF WIRE.

Our Weatherproof wire is put on reels in long lengths, and has a hard, smooth finish, presenting the least possible chance for adherence of ice and snow. We keep in stock all sizes given in the accompanying table, to 0 000 B. & S., in both double and triple braid.

In the Stranded wires, we keep only the most commonly used sizes. We make this Feed Wire Strand either concentric or cable-laid, as desired.

### FIRE AND WEATHERPROOF WIRE.

For interior work, we manufacture a Fire and Weatherproof insulation. Full information concerning weights, diameters and prices furnished on application.

### UNDERWRITERS' WIRE.

Underwriters' wire seems to be used chiefly for inside work. Its weight is about the same as double-braid Weatherproof.

#### WEATHERPROOF IRON WIRE.

We keep in stock 10, 12 and 14 B. W. G., both double and triple braid.

| Numbers,<br>B. W. G. | Weights<br>Pou | Lengths in    |                  |  |
|----------------------|----------------|---------------|------------------|--|
|                      | Double braid.  | Triple braid. | coils.<br>Miles. |  |
| 4                    | 997            | 1 102         | 1/8              |  |
| 6                    | 713            | 773           | 1/8              |  |
| 8                    | 483            | 548           | 1/4              |  |
| 9                    | 403            | 464           | 1/8              |  |
| 10                   | 350            | 410           | 1/8              |  |
| 12                   | 240            | 265           | 1/2              |  |
| 14                   | 150            | 176           | 1/2              |  |

### WEATHERPROOF WIRE.

|                              | Do                               | uble br                         | aid.                                      | Tr                         | iple bra                        | id.                                       | App                                                         | roxi-                                                                                                           |
|------------------------------|----------------------------------|---------------------------------|-------------------------------------------|----------------------------|---------------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ers,<br>S. G.                | de<br>de<br>de                   | Wei<br>Pot                      | ghts.<br>inds.                            | de<br>neters<br>2ds        | Wei<br>Pou                      | ghts.<br>inds.                            | weig<br>Pou                                                 | ghts.<br>nds.                                                                                                   |
| Numh<br>B. &                 | Outsie<br>dian<br>in 32<br>in 32 | 1 000<br>feet.                  | Mile.                                     | Outsio<br>dian<br>in 3%    | 1 000<br>feet.                  | Mile.                                     | Reel.                                                       | Coil.                                                                                                           |
| 0 000<br>000<br>00<br>0<br>1 | 20<br>18<br>17<br>16<br>15       | 716<br>575<br>465<br>375<br>285 | 3 781<br>3 086<br>2 455<br>1 980<br>1 505 | 24<br>22<br>18<br>17<br>16 | 775<br>630<br>490<br>400<br>306 | 4 092<br>3 326<br>2 587<br>2 112<br>1 616 | $2 \ 000 \\ 2 \ 000 \\ 500 \\ 500 \\ 500 \\ 500 $           | 250<br>250<br>250<br>250<br>250<br>250                                                                          |
| 2<br>3<br>4<br>5<br>6        | 14<br>13<br>11<br>10<br>9        | 245<br>190<br>152<br>120<br>98  | 1 294<br>1 008<br>803<br>634<br>518       | 15<br>14<br>12<br>11<br>10 | 268<br>210<br>164<br>145<br>112 | 1 415<br>1 109<br>866<br>766<br>591       | $     500 \\     500 \\     250 \\     260 \\     275     $ | 250<br>250<br>125<br>130<br>140                                                                                 |
| 8<br>10<br>12<br>14<br>16    | 8<br>7<br>6<br>5<br>. 4          | 66<br>45<br>30<br>20<br>14      | 849<br>238<br>158<br>106<br>74            | 9<br>8<br>7<br>6<br>5      | 78<br>55<br>35<br>26<br>20      | 412<br>290<br>185<br>137<br>106           | 200<br>200<br>                                              | $     \begin{array}{r}       100 \\       100 \\       25 \\       25 \\       25 \\       25     \end{array} $ |
| 18                           | 8                                | 10                              | 53                                        | 4                          | 16                              | 85                                        |                                                             | 25                                                                                                              |

### STRANDED WEATHERPROOF FEED WIRE.

| Circular  | Outside | Weig<br>Pour | Approxi-<br>mate |                    |
|-----------|---------|--------------|------------------|--------------------|
| mils.     | Inches. | 1 000 feet.  | Mile.            | on reels.<br>Feet. |
| 1 000 000 | 11/2    | 8 550        | 18 744           | 800                |
| 900 000   | 144     | 3 215        | 16 975           | 800                |
| 750,000   | 132     | 2 000        | 10 200           | 850                |
| 700 000   | 19      | 2 545        | 13 438           | 900                |
| 650 000   | 11/4    | 2 378        | 12 556           | 5100               |
| 600 000   | 133     | 2 210        | 11 668           | 1 000              |
| 550 000   | 13      | 2 043        | 10 787           | 1 200              |
| 500 000   | 11/8    | 1 875        | 9 900            | 1 320              |
| 450 000   | 132     | 1 703        | 8 992            | 1 400              |
| 400 000   | 1,1,    | 1 530        | 8 078            | 1 450              |
| 350 000   | 1       | 1 358        | 7 170            | 1 500              |
| 300 000   | 18      | 1 185        | 6 257            | 1 600              |
| 250 000   | 32      | 1 012        | 5 343            | 1 600              |

The table is calculated for concentric strands. Rope-laid strands are larger.

### RUBBER WIRE.

W E MANUFACTURE rubber insulated wires for all purposes, including wires and cables for aerial, underground, and submarine use. The copper conductor is tinned, and then covered with a cement of pure rubber, which causes the succeeding coat of rubber to adhere firmly to the wire. This layer consists of white rubber without sulphur. Over this is a layer of vulcanized rubber, and the whole is covered with a finishing braid of cotton saturated with a Weatherproof compound, which protects the rubber from mechanical injury, and from the action of the air. A poor quality of rubber insulation is inferior to Weatherproof, and we would recommend our Fire and Weatherproof, and we

A good rubber wire should have its conductor central, the insulation should adhere firmly to the wire, it should not crack or become brittle after use, and it should show, after immersion in water for twenty-four hours, the same insulation resistance per mile as when tested after being first put in water. The absolute number of megohms per mile depends on the age of the rubber used, together with other details of manufacture, and is not always a sure guide to the quality of the insulation. Uniformity of insulation among several coils of wire made at the same time, or among the various conductors of a cable, is a much more valuable aid in detecting a poor piece of wire, as in this case an insulation lower than the average shows a local defect, which, in time, will be likely to cause trouble.

## CRESCENT RUBBER WIRE

### Stranded conductors.

| Num-       | Circular  | Outside<br>diam-  | Weights<br>per 1 000 | Sizes of wires in<br>strands. B. & S. G. |           |  |  |
|------------|-----------|-------------------|----------------------|------------------------------------------|-----------|--|--|
| B. & S. G. | mils.     | eters.<br>Inches. | feet.<br>Pounds.     | Regular.                                 | Flexible. |  |  |
|            | 1 000 000 | 1.7               | 3 690                | 8                                        | 12        |  |  |
|            | 900 000   | 111               | 3 370                | 8                                        | 12        |  |  |
|            | 800 000   | 1.9               | 3 020                | 8                                        | 12        |  |  |
|            | 700 000   | 1739              | 2 685                | 10                                       | 12        |  |  |
|            | 600 000   | 1 3 3             | 2 345                | 10                                       | 12        |  |  |
|            | 500 000   | 1,4               | 1 885                | 10                                       | 14        |  |  |
|            | 450 000   | 11                | 1 723                | 10                                       | 14        |  |  |
|            | 400 000   | 1                 | 1 560                | 10                                       | 14        |  |  |
|            | 350 000   | 18                | 1 378                | 10                                       | 14        |  |  |
|            | 300 000   | 7/8               | 1 155                | 10                                       | 14        |  |  |
|            | 250 000   | 27                | 995                  | 10                                       | 14        |  |  |
| 0 000      |           | 25                | 866                  | 10                                       | 15        |  |  |
| 000        |           | 23                | 725                  | 10                                       | 15        |  |  |
| 00         |           | 11                | 613                  | 11                                       | 15        |  |  |

| Numbers,<br>B. & S. G. | Outside d<br>32ds of | an inch.  | Weights<br>per 1 000 | Sizes of wires in<br>strand. B. & S. G. |          |  |  |
|------------------------|----------------------|-----------|----------------------|-----------------------------------------|----------|--|--|
|                        | Solid.               | Stranded. | feet.<br>Pounds.     | Regular.                                | Flexible |  |  |
| 0                      | 18                   | 20        | 489                  | 12                                      | 16       |  |  |
| 1                      | 16                   | 18        | 393                  | 12                                      | 16       |  |  |
| 2                      | 14                   | 15        | 309                  | 12                                      | 18       |  |  |
| 3                      | 13                   | 14        | 244                  | 13                                      | 18       |  |  |
| 4                      | 12                   | 13        | 198                  | 14                                      | 20       |  |  |
| 5                      | 11                   | 12        | 168                  | 15                                      | 20       |  |  |
| 6                      | 10                   | 11        | 146                  | 16                                      | 20       |  |  |
| 8                      | 9                    | 10        | 106                  | 18                                      | 22       |  |  |
| 10                     | 8                    | 8         | 77                   | 20                                      | 25       |  |  |
| 12                     | 7                    | 7         | 55                   | 20                                      | 25       |  |  |
| 14                     | 6                    | 6         | 35                   | 21                                      | 25       |  |  |
| 16                     | 5                    | 5         | 25                   | 23                                      | 25       |  |  |
| 18                     | 4                    | 4         | 20                   | 25                                      | 25       |  |  |

### MAGNET WIRE.

THE BARE COPPER intended for Magnet wire is specially drawn and annealed, great care being taken to have it true to gauge, and soft.

A difference from the standard, of one mil, is allowed on sizes larger than No. 10 B. & S.G.; from No. 10 to No. 14, three-fourths of a mil variation is allowed, and any wire smaller than No. 14, one-half a mil variation is allowed.

The insulation is smooth and uniform, and is kept true to gauge to within one mil of the required diameter.

We manufacture any special kind of Magnet wire required, flats, squares and strands.

We understand that a No. 6 B. & S. square Magnet wire measures  $162 \times 162$  mils.

Flats are designated by their width and thickness. Thus a flat Magnet wire 340 mils wide and 40 mils thick would be designated as a 340 x 40 flat Magnet wire.

Strands can be furnished of any size, insulated with double or triple windings of cotton, or any combination of braids and windings that may be desired.
# MAGNET WIRE.

| Numbers,<br>B. & S. G. | Diameter<br>drawn. | Outside d<br>Mi | Approxi-<br>mate<br>weights on |                   |
|------------------------|--------------------|-----------------|--------------------------------|-------------------|
|                        | Mils.              | Double.         | Single.                        | reels.<br>Pounds. |
| 0                      | 325                | 343             | 837                            | 200               |
| 1                      | 289                | 307             | 301                            | 200               |
| 2                      | 258                | 276             | 270                            | 200               |
| 8                      | 229                | 247             | 241                            | 200               |
| 4                      | 204                | 222             | 216                            | 200               |
| 5                      | 182                | 200             | 194                            | 200               |
| 6                      | 162                | 178             | 172                            | 200               |
| 7                      | 144                | 160             | 154                            | 200               |
| - 8                    | 128                | 142             | 137                            | 200               |
| 9                      | 114                | 126             | 122                            | 200               |
| 10                     | 102                | 112             | 108                            | 200               |
| 11                     | 91                 | 101             | 97                             | 200               |
| 12                     | 81                 | 91              | 87                             | 200               |
| 13                     | 72                 | 81              | 78                             | 160               |
| 14                     | 64                 | 73              | 70                             | 160               |
| 15                     | 57                 | 66              | 68                             | 50                |
| 16                     | 51                 | 60              | 57                             | 50                |
| 17                     | 45                 | 54              | 51                             | 50                |
| 18                     | 40                 | 49              | 46                             | 50                |
| 19                     | 36                 | 45              | 42                             | 50                |

| Numbers,<br>B. & S. G. | Resistanc         | e per 1 000<br>et.                          | Numbers,<br>B. & S. G. | Resistance per 1 000<br>feet.                                                                |                                                                                       |  |
|------------------------|-------------------|---------------------------------------------|------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|                        | 18 per<br>centum. | 30 per<br>centum.                           |                        | 18 per<br>centum.                                                                            | 30 per<br>centum.                                                                     |  |
| 6                      | 7.20              | $11.21 \\ 14.18 \\ 17.95 \\ 22.63 \\ 28.28$ | 22                     | 295.38                                                                                       | 459.48                                                                                |  |
| 7                      | 9.12              |                                             | 23                     | 370.26                                                                                       | 575.96                                                                                |  |
| 8                      | 11.54             |                                             | 24                     | 468.18                                                                                       | 728.28                                                                                |  |
| 9                      | 14.55             |                                             | 25                     | 590.22                                                                                       | 918.12                                                                                |  |
| 10                     | 18.18             |                                             | 26                     | 748.08                                                                                       | 1 163.68                                                                              |  |
| 11                     | 22.84             | 35.53                                       | 27                     | 937.98                                                                                       | $\begin{array}{c}1 \ 459.08\\1 \ 853.04\\2 \ 304.12\\2 \ 942.8\\3 \ 715.6\end{array}$ |  |
| 12                     | 28.81             | 44.82                                       | 28                     | 1 191.24                                                                                     |                                                                                       |  |
| 13                     | 36.48             | 56.75                                       | 29                     | 1 481.22                                                                                     |                                                                                       |  |
| 14                     | 46.17             | 71.82                                       | 30                     | 1 891.8                                                                                      |                                                                                       |  |
| 15                     | 58.21             | 90.55                                       | 31                     | 2 388.6                                                                                      |                                                                                       |  |
| 16                     | 72.72             | 113.12                                      | 32                     | $\begin{array}{r} 2 \ 955.6 \\ 3 \ 751.2 \\ 4 \ 764.6 \\ 6 \ 031.8 \\ 7 \ 565.4 \end{array}$ | 4 597.6                                                                               |  |
| 17                     | 93.40             | 145.29                                      | 33                     |                                                                                              | 5 835.2                                                                               |  |
| 18                     | 118.20            | 183.87                                      | 34                     |                                                                                              | 7 411.6                                                                               |  |
| 19                     | 145.94            | 227.02                                      | 35                     |                                                                                              | 9 382.8                                                                               |  |
| 20                     | 184.68            | 287.28                                      | 36                     |                                                                                              | 11 768.4                                                                              |  |
| 21                     | 232.92            | 362.32                                      |                        |                                                                                              |                                                                                       |  |

## GERMAN SILVER WIRE.

The resistance of German silver wire varies according to the method of manufacture and the materials used.

From actual tests on wire with eighteen per centum of nickel, extending over ten years, it seems that eighteen times the resistance of copper, at  $75^{\circ}$  F., represents very closely the resistance of this alloy. This value is rather under than over the average results of the tests.

For the thirty per centum alloy, we have to depend on the results of a single series of tests, and while the results are believed to be correct, they are not as reliable as those given for the eighteen per centum German silver wire. We take the resistance of the thirty per centum alloy at twenty-eight times the resistance of copper, at  $75^{\circ}$ .

The International ohm is taken as the unit of resistance.

## OFFICE WIRES.

Office wire is usually made with a wind and a braid of cotton saturated with paraffine. It is sometimes required with a double braid or triple braid of cotton. The most common colors are red and white. Any combination of colors can be furnished.

Damp-proof Office wire has the inside wind saturated with black Weatherproof compound, while the outside finish is the same as ordinary Office wire.

Annunciator wire has a covering consisting of two wraps of cotton saturated with paraffine. The outer covering is made in solid colors or combination of two colors.

Double conductors for house wiring are of various kinds. Two conductors twisted together, without any outside cover, form a convenient method of wiring for bells, telephones, etc. These conductors may be 18 B. & S., with double braid Weatherproof or with Annunciator insulation.

Two-conductor Office wire may be two Office wires laid side by side and covered with a two-colored Office braid, or it may consist of two Annunciator wires so insulated.

Weatherproof cables consist of 18 B. & S. G. Annunciator wires, twisted into a cable and covered with rubber tape and a braid of cotton saturated with Weatherproof insulation. They weigh about ten pounds per 1 000 feet per conductor. For work inside building, in dry places, the rubber tape may be omitted, and the finishing braid made any color to correspond with the woodwork.

| Numbers,<br>B. & S. G. | Weights ]       | per 1 000 feet.      | Sizes of Lamp cord. |         |
|------------------------|-----------------|----------------------|---------------------|---------|
|                        | Office<br>wire. | Annunciator<br>wire. | Silk.               | Cotton. |
| 14                     | 17              | 15                   | 1/4                 | 5       |
| 16                     | 12              | 10                   | 10                  | 1/4     |
| 18                     | 9               | 7                    | 18                  | 37      |
| 20                     | 7               | 41/2                 | 1/8                 | 10      |

Lamp cord is furnished in silk or cotton insulation. Green and yellow is the standard color combination.

## POWER CABLES.

W<sup>E</sup> MANUFACTURE power and electric-light cables, with jute, paper or rubber insulation. The thickness and kind of insulation depend on the use for which the cable is intended. The table of diameters and weights is based on  $\frac{1}{16}$  insulation on a side, and is approximately correct for any kind of insulation.

#### Specifications for Underground Cable of 500 000 C. M.

### 1. COPPER CONDUCTOR.

The conductor shall consist of 47 wires, each 104 mils in diameter, and shall weigh not less than 1.525 pounds per foot. The copper used shall have a conductivity of not less than 98 per cent.

### 2. INSULATION.

The insulation shall consist of paper not less than  $\frac{1}{10}$  thick, and shall form a wall of uniform thickness around the conductor.

## 3. SHEATH.

The insulated conductor shall be enclosed in a pipe composed of lead and tin. The amount of tin shall not be less than 2.9 per cent. The pipe shall be formed around the core, and shall be free from holes or other defects, and of uniform thickness and composition.

### 4. INSULATION RESISTANCE.

The insulation resistance shall be not less than 300 megohms per mile, at 60° F.

# POWER CABLES.

| Numbers,<br>B. & S. G. | Circular mils. | Outside<br>diameters.<br>Inches. | Weights,<br>1 000 feet.<br>Pounds. |  |
|------------------------|----------------|----------------------------------|------------------------------------|--|
|                        | 1 000 000      | 118                              | 6 685                              |  |
|                        | 900.000        | 133                              | 6 228                              |  |
|                        | 800 000        | 131                              | 5 773                              |  |
|                        | 750 000        | 15/8                             | 5 543                              |  |
|                        | 700 000        | 118                              | 5 315                              |  |
|                        | 650 000        | 1,9                              | 5 088                              |  |
|                        | 600 000        | 117                              | 4 857                              |  |
|                        | 550 000        | 11/2                             | 4 630                              |  |
|                        | 500 000        | 17                               | 4 278                              |  |
|                        | 450 000        | 18/8                             | 8 923                              |  |
|                        | 400 000        | 111                              | 3 619                              |  |
|                        | 350 000        | 15                               | 3 416                              |  |
|                        | 300 000        | 11/4                             | 3 060                              |  |
|                        | 250 000        | 1,3                              | 2 732                              |  |
| 0 000                  | 211 600        | 131                              | 2 533                              |  |
| 000                    | 168 100        | 118                              | 2 300                              |  |
| 00                     | 133 225        | 1                                | 2 021                              |  |
| 0                      | 105 625        | 18                               | 1 772                              |  |
| 1                      | 83 521         | 32                               | 1 633                              |  |
| 2                      | 66 564         | 7/8                              | 1 482                              |  |
| 8                      | 52 441         | 39                               | 1 360                              |  |
| 4                      | 41 616         | 8/4                              | 1 251                              |  |
| 6                      | 26 244         | 18                               | 1 046                              |  |

## TELEPHONE CABLES.

#### Lead-encased for underground or aerial use.

THE INSULATION of these cables is dry paper. We manufacture several styles of 19 B. & S. G., 20 B. & S. G., and 22 B. & S. G., according to the use for which they are intended. The most common size is 19 B. & S. G. We also supply terminals and hangers. To determine the size supporting strand to use with these cables, consult tables page 39.

### Specifications for Telephone Cables.

### 1. Conductors.

Each conductor shall be .035 89 inches in diameter, (19 B. & S. G.,) and have a conductivity of 98 per cent. of that of pure soft copper.

## 2. CORE.

The conductor shall be insulated, twisted in pairs, the length of the twist not to exceed three inches, and formed into a core arranged in reverse layers.

### 3. SHEATH.

The core shall be enclosed in a pipe composed of lead and tin, the amount of the tin shall be not less than 2 per cent. The pipe shall be formed around the core, and shall be free from holes or other defects, and of uniform thickness and composition.

## 4. Electrostatic Capacity.

The average electrostatic capacity shall not exceed .080 of a microfarad per mile, each wire being measured against all the rest and a sheath grounded; the electrostatic capacity of any wires so measured shall not exceed .085 of a microfarad per mile.

## 5. INSULATION RESISTANCE.

Each wire shall show an insulation of not less than 500 megohms per mile, at  $60^{\circ}$  F., when laid, spliced and connected to terminal ready for use; each wire being measured against all the rest and sheath grounded.

## 6. CONDUCTOR RESISTANCE.

Each conductor shall have a resistance of not more than 47 B. A. ohms, at 60° F., for each mile of cable, after the cable is laid and connected to the terminals.

## TELEGRAPH CABLES.

#### Lead-encased for underground use.

T HESE cables are made of either rubber, cotton or paper insulation. The sizes and weights are approximately correct for rubber and cotton insulation. Both sizes and weights are slightly reduced for paper insulation. In all cases the cables are lead-encased.

#### Specifications for Telegraph Cables.

#### 1. Conductors.

Each conductor shall be .064 inches in diameter, (14 B. & S. G.,) and have a conductivity of 98 per cent. of that of pure copper.

### 2. CORE.

The conductors shall be insulated to s with cotton, and formed into a core arranged in reverse layers. This core shall be dried and saturated with approved insulating compound.

## 3. SHEATH.

The core shall be enclosed in a pipe composed of lead and tin. The amount of tin shall not be less than 2.9 per cent. The pipe shall be formed around the core, and shall be free from holes or other defects, and of uniform thickness and composition.

4. INSULATION RESISTANCE.

The wire shall show an insulation of not less than 300 megohms per mile, at  $60^{\circ}$  F., when laid, spliced and connected to terminals ready for use, each wire being measured against all the rest and the sheath grounded.

### 5. CONDUCTOR RESISTANCE.

Each conductor shall have a resistance of not more than 28 International ohms, at  $60^{\circ}$  F., for each mile of cable, after the cable is laid and connected up to the terminals.

# TELEGRAPH CABLES.

| Number<br>conductors, | 14 B. & S. G.<br>Insulated to 3. |                         | 16 B. & S. G.<br>Insulated to 52. |                         | 18 B. & S. G.<br>Insulated to 37 |                         |
|-----------------------|----------------------------------|-------------------------|-----------------------------------|-------------------------|----------------------------------|-------------------------|
|                       | Outside<br>diameters.<br>Inches. | Weights,<br>1 000 feet. | Outside<br>diameters.<br>Inches.  | Weights,<br>1 000 feet. | Outside<br>diameters.<br>Inches. | Weights,<br>1 000 feet. |
| 1                     | 3/2                              | 308                     | 8/8                               | 299                     | 8%                               | 291                     |
| 2                     | 7                                | 438                     | 7                                 | 421                     | 13                               | 356                     |
| 8                     | 1/2                              | 573                     | 1/2                               | 546                     | 7                                | 421                     |
| 4                     | 5/8                              | 810                     | 20                                | 670                     | 15                               | 486                     |
| 5                     | 8/4                              | 972                     | 5/8                               | 793                     | 1/2                              | 551                     |
| 6                     | 18                               | 1 132                   | 11                                | 946                     | 17                               | 616                     |
| 7                     | 7/8                              | 1 295                   | 8/4                               | 965                     | Ye Ye                            | 681                     |
| 10                    | 18                               | 1 512                   | 13                                | 1 155                   | 5/8                              | 820                     |
| 12                    | 118                              | 1 873                   | 7/8                               | 1 327                   | 3/4                              | 978                     |
| 15                    | 13                               | 2 263                   | 18                                | 1 518                   | 18                               | 1 148                   |
| 18                    | 11/4                             | 2 523                   | 11                                | 1 880                   | 7/8                              | 1 318                   |
| 20                    | 15                               | 2 756                   | 11/8                              | 2 076                   | 18                               | 1 477                   |
| 25                    | 175                              | 3 250                   | 118                               | 2 496                   | 1                                | 1 690                   |
| 80                    | 1.8                              | 3 515                   | 13/8                              | 2 768                   | 110                              | 1 903                   |
| 85                    | 111                              | 3 910                   | 17                                | 8 040                   | 13                               | 2 116                   |
| 40                    | 13/4                             | 4 175                   | 11/2                              | 3 312                   | 11/4                             | 2 330                   |
| 45                    | 113                              | 4 441                   | 110                               | 3 533                   | 1.8                              | 2 471                   |
| 50                    | 118                              | 4 835                   | 15/8                              | 8 755                   | 15                               | 2 628                   |
| 55                    | 2                                | 5 100                   | 111                               | 8 978                   | 18/8                             | 2 866                   |
| 60                    | 218                              | 5 365                   | 18/4                              | 4 200                   | 175                              | 3 104                   |
| 65                    | 21/8                             | 5 631                   | 113                               | 4 422                   | 115                              | 3 245                   |
| 70                    | 23                               | 5 897                   | 17/8                              | 4 644                   | 11/2                             | 3 402                   |
| 80                    | 216                              | 6 408                   | 2                                 | 5 087                   | 15/8                             | \$ 798                  |
| 90                    | 27                               | 6 916                   | 21                                | 5 402                   | 111                              | 4 027                   |
| 100                   | 228                              | 7 875                   | 21/8                              | 5 720                   | 13/4                             | 4 275                   |

## AERIAL CABLES.

THESE cables are made from double-coated rubber wire, taped. After standing, the cable is doubletaped and covered with tarred jute, over which is placed a braid of heavy cotton saturated with Weatherproof compound. This outside covering protects the rubber from the action of the air and from mechanical injury. The separate wires are tested in water, and no wire is used which will not fully meet a water test. The result is a cable which will work under water as well as on a pole line, if there is no danger of mechanical injury. The ordinary size for telegraphic work is 14 B. & S., insulated to  $\frac{\sigma_0}{2\sigma}$ . A trace wire can be placed in each layer, if desired.

The size galvanized strand to support these cables may be found from the table page 39. Suppose the span is 130 feet and a 10-conductor 14 B. & S. G. Aerial cable is used, then from these tables it is seen a 4-inch ordinary galvanized strand will support a cable weighing 423 pounds per 1 000 feet, with a 130-foot span.

#### Specifications for 14 B. & S. Aerial Cable.

#### 1. CONDUCTORS.

Each conductor shall be .064 inches in diameter, (14 B. & S. G.,) and have a conductivity of 98 per cent. of that of pure copper.

#### 2. CORE.

The conductors shall be insulated to  $\frac{1}{32}$  with rubber and tape, and formed into a core arranged in reverse layers.

#### 3. PROTECTIVE COVERING.

The core shall be covered with two wraps of friction tape and one wrap of tarred jute. Over this there shall be a braid saturated with Weatherproof compound.

#### 4. INSULATION RESISTANCE.

Each wire shall show an insulation resistance of not less than 300 megohums per mlle, at  $60^{\circ}$  F, after being immersed in water 24 hours. This test shall be made on the core after all the conductors are laid up, but before the outside coverings are put on.

#### 5. CONDUCTOR RESISTANCE.

Each conductor shall have a resistance of not more than 28 International ohms, at 60° F., for each mile of cable.

# AERIAL CABLES.

Rubber insulation.

|                       | 14 B. & S. G. Insulated to $\frac{6}{32}$ . |                         | 16 B. o<br>Insulat               | & S. G.<br>ed to 32.    | 18 B. & S. G.<br>Insulated to 32 |                         |
|-----------------------|---------------------------------------------|-------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------|
| Number<br>conductors. | Outside<br>diameters.<br>Inches.            | Weights,<br>1 000 feet. | Outside<br>diameters.<br>Inches. | Weights.<br>1 000 feet. | Outside<br>diameters.<br>Inches. | Weights,<br>1 000 feet. |
| 2                     | 8/8                                         | 102                     | 8/8                              | 92                      | 8/8                              | 82                      |
| 3                     | 1/2                                         | 149                     | 7                                | 126                     | 13                               | 104                     |
| 4                     | 25                                          | 183                     | 1/2                              | 155                     | 7                                | 127                     |
| 5                     | +1                                          | 226                     | 5/8                              | 193                     | 1/2                              | 151                     |
| 6                     | 3/4                                         | 260                     | 11                               | 222                     | 9<br>16                          | 175                     |
| 7                     | 13                                          | 297                     | 3/4                              | 251                     | 5/8                              | 200                     |
| 10                    | 18                                          | 401                     | 7/8                              | 335                     | 11                               | 256                     |
| 12                    | 1                                           | 465                     | 18                               | . 393                   | 8/4                              | 296                     |
| 15 .                  | 11/8                                        | 563                     | 1                                | 468                     | 13                               | 355                     |
| 18                    | 13                                          | 651                     | 118                              | 541                     | 7/8                              | 413                     |
| 20                    | 11/4                                        | 714                     | 11/8                             | 593                     | 32                               | 452                     |
| 25                    | 13/8                                        | 863                     | 13                               | 708                     | 15                               | 541                     |
| 30                    | 178                                         | 1 008                   | 11/4                             | 824                     | 1                                | 633                     |
| 35                    | 11/2                                        | 1 147                   | 13                               | 938                     | 118                              | 723                     |
| 40                    | 110                                         | 1 268                   | 18/8                             | 1 053                   | 11/8                             | 813                     |
| 45                    | 15/8                                        | 1 431                   | 11/2                             | 1 182                   | 13                               | 903                     |
| 50                    | 13/4                                        | 1 577                   | 15/8                             | 1 311                   | 11/4                             | 994                     |

| r<br>ictors. | Outside    | Armor               | wires.                    | Total weights.<br>Pounds. |        |
|--------------|------------|---------------------|---------------------------|---------------------------|--------|
| Numbe        | diameters. | Number<br>of wires. | Num-<br>bers,<br>B. W. G. | 1 000 feet.               | Mile.  |
| 1            | 7/8        | 12                  | 8                         | 1 250                     | 6 600  |
| 2            | 1          | 15                  | 8                         | 1 722                     | 9 092  |
| 3            | 11/8       | 14                  | 6                         | 2 363                     | 12 477 |
| 4            | 15         | 16                  | 6                         | 2 794                     | 14 752 |
| 5            | 15         | 16                  | 6                         | 2 968                     | 15 671 |
| 6            | 11/2       | 16                  | 4                         | 3 822                     | 20 180 |
| 7            | 11/2       | 16                  | 4                         | 3 972                     | 20 972 |
| 10           | 17/8       | 18                  | 3                         | 5 404                     | 28 533 |

# SUBMARINE CABLES.

The core consists of  $7 \times 22$  B. & S. tinned copper wires, insulated with rubber to  $\frac{8}{3 \cdot 3}$  of an inch, laid up with proper jute bedding.

We are prepared to furnish telegraph cables with gutta-percha insulation. This is the best insulation for submarine work, and its reliability and durability more than make up the difference in cost between it and any other insulation.

We are prepared to furnish submarine cables of any description for use in electric lighting and street railway work.

No list of these cables can be made, owing to the varying conditions to be met.

## THE COLUMBIA RAIL-BOND.

THE COLUMBIA BOND consists of three parts, two

I copper thimbles and the connecting copper rod. On each end of this copper rod is a truncated cone-

head with a fillet at the base. The inside of the thimble is tapered to fit the head on the bond, while the



outside is slightly tapered in the opposite way.

In applying the bond, the cone-shaped heads are placed in the holes in the rail from one side and the thimbles are slipped over them from the other.

A portable hand-press is then applied, and the wedgeshaped head of the bond is forced into the thimble so that it is not possible to see the line separating the thimble and the head in a cross-section of the two.

The end of the head of the bond is expanded by a center-punch, held in position in the press.

When installed, owing to the pressure exerted between the head and the thimble, and also to the fact that they are of the same kind of metal, the two become one, both electrically and mechanically.

The contact of rail and bond is made by a wedge expanding the thimble against the hole in the rail, and, as the bond is wedged both ways, it cannot get loose.

For a 0 000 B. & S. G. or 000 B. & S. G. bond, the holes in the rail should be  $\frac{7}{8}$ -inch, and for a 00 B. & S. G. or a 0 B. & S. G. bond,  $\frac{5}{8}$ -inch.

The total length of a bond is  $3\frac{1}{2}$  inches more than the distance from center to center of holes in rails. The total length of a bond should be 8 inches more than that of the splice plate.









University of California SOUTHERN REGIONAL LIBRARY FACILITY 405 Hilgard Avenue, Los Angeles, CA 90024-1388 Return this material to the library from which it was borrowed, D LD-UR





