

WIRE
 iN
 Electrical Construction.

\cdots

JOHN A.ROEBLING'S SONS CO.

TRENTON, N. 3 .

California
egional
xcility

WIRE

IN

Electrical Construction

John A. Roebling's Sons Co.

TRENTON, N. J.

117-119 Liberty street, New York.

32 South Water street, Cleveland.

171-173 Lake street, Chicago.

25-27 Fremont street, San Francisco.

を Be Brandt gores, trenton.

COPYRIGHTED, 1897,
BY
JOHN A. ROEBLING'S SONS CO.

All rights reserved.

$T K$
3305
$R 62 W$

PREFATORY.

THE OBJECT of this book is to give in a convenient form the properties and dimensions of bare and insulated wires and cables used in electrical construction. No attempt has been made to describe the uses of wire in any of the applications of electricity. To go into this would require that the whole field of electrical engineering be covered.

It is believed that some of the matter is new. All of the tables have been very carefully computed, and are believed to be correct.

In nearly all cases the formulæ and constants used in computing tables are given, so that the user can determine at once the basis from which the table was calculated. A considerable amount of work has been done in testing samples to determine the proper constants. In many cases this has taken more time than the actual preparation of the tables.

It is hoped that the work will be acceptable to the users of electrical wires, and that some of the labor involved in the preparation of these tables will be saved to those using the book.

John A. Roebling's Sons Co.

Trenton, N. J., May, 1897.

TABLE OF CONTENTS.

Mrasures and their Equivalents: PAGE.
Measures of length 1
Measures of area 2
Measures of volume 3
Measures of weight. 4
Measures of work. 5
Measures of pressure. 6
Decimal equivalents of parts of an inch. 7
Wire gauges in mils. 8
Wire gauges in millimeters. 9
Tables of specific gravities: 10
Liquids 11
Gases. 11
Weights of substances. 12
The comparison of thermometers:
Fahrenheit to Centigrade. 13
Centigrade to Fahrenheit. 13
Electrical units. 14-15
COPPER WIRE:
Formulæ and explanations. 16-17
Matthiessen's standard. 17
Temperature coëfficients. 18
Properties of copper wire-weights, resistances, etc.English system :
Brown \& Sharpe gauge. 19
Birmingham wire gauge 20
New British standard gauge. 21
Metric system :
Brown \& Sharpe gauge. 22
Weights of all gauges. 23
Hard-drawn copper wire:
British Post-office specifications. 24
Telephone specifications 25
Tensile strength of copper wire. 26
Bi-metallic wire. 27
Strands of copper wire :
Formulæ and explanations. 28
Diameters and properties. 29
Diameters of wires in strands. 30-31
Numbers of wires in strands. 32-33
Iron Wire: page.
Formulæ and explanations. 34
Properties of iron wire-weights, strength, resistances, etc., 35
Specifications:
Western Union Telegraph company 36
British Post-office. 37
Strands:
Formulæ and explanations. 38
Properties of galvanized steel wire strands-welghts and breaking strength. 38
Supporting capacity of galvanized strands. 39
Currents:
Fusing effects:
Diameters of wires. 40
Current required. 41
Heating effects:
References and explanations. 42
Carrying capacity:
Insurance rules. 43
Insulated wires in mouldings. 44
Wires indoors. 45
Wires outdoors. 46
Spans:
Formulæ and explanations. 47-49
Specifications. 48
Strains at centers of spans. 50-52
Total lengths of wires in spans. 54-55
Deflections in spans at various temperatures. 53
Description of the Roebling Electric Wires:
Weatherproof wires. 56-57
Rubber wires. 58-59
Magnet wire. 60-61
German silver wire. 62
Office wires. 63
Cables:
Power cables. 64-65
Telephone cables. 66-67
Telegraph cables. 68-69
Aerial cables. 70-71
Submarine cables. 72
Rall-bonds 73
MEASURES OF LENGTH.

MEASURES OF AREA.

Names of units.	Circular mils.	Square mils.	Square millimeters.	Square centimeters.	Square inches.	Square	Square yards.	Square meters.
Circular mils...........	1.	. 7854	. 0005067		
Square mils............	1.2732	1.	. 000645	. 0000064	. 000001
Square millimeters..	1973.5	1550.1	1.	.$^{.01}$. 00155 001
Square centimeters.	197350.	155010.	100.	1.		. 001077	. 00012	. 0001
Square inches........	1273239.	1000000.	${ }^{645.2}$	${ }_{9}^{*} 6.452$				
Square feet.............		$\begin{array}{r} 92900 . \\ 836100 . \end{array}$	$\begin{array}{r\|r} 929 . \\ 8361 . \end{array}$	$\begin{array}{r} 144 . \\ 1296 . \end{array}$	$\begin{aligned} & 1 . \\ & 9 . \end{aligned}$	$.11111$ $1 .$	$\begin{aligned} & .0929 \\ & * .836 \end{aligned}$
Square yards..........	$\begin{array}{r} 836100 . \\ 1000000 . \end{array}$	$\begin{array}{r\|r} 8361 . \\ 10000 . \end{array}$	$\left\lvert\, \begin{array}{ll} 1 & 296 . \\ 1550.016 \end{array}\right.$	$\underset{* 10.764}{9 .}$	${ }_{* 1.196}^{1 .}$	1.

Circular mil = a circle whose diameter is .001 inch.
Square mil $=$ a square whose sides are .001 inch.
MEASURES OF VOLUME.

Names of units.	Cubie centimeters.	Cubic inches.	Liters.	Gallons.	Cubic feet.	Cubic yards.	Cubic meters.
Cubic centimeters........	1.	*. 061	. 001	. 000264	. 000035	. 0000013	. 000001
Cubic inches	*16.387	1.	. 016387	. 00433	. 000578	.0000214	. 000016
Liters	1000.	61.023	1.	*. 26417	. 035314	. 001308	. 001
Gallons.........................	3785.4	331.	*3.785 44	1.	.13368	. 004952	. 003785
Cubic feet.....................	28315.	1728.	28.315				
Cubic yards..................	764552.	46656.	764.55	201.97	27.	1.	$\text { *. } 765$
Cubic meters	1000000.	61023.	1000.	264.17	*35.314	*1.308	

Gallon $=4$ quarts.
Quart $=2$ pints.

MEASURES OF WORE.

Names of units.	Ergs.		Pounddegree Fahrenheit.	Wattsecond.	Kilogrammeter.	Footpound.	Horse-powersecond.
Gram-degree Centigrade......	41549500.	1.	. 0039683	4.15495	. 42354		
Pound-degree Fahrenheit	10470300000.	252.11	1.	1047.03	106.731	772.	1.403
Watt-second...........................	10000000.	.2407	. 0009551	1.	.101937	.737324	. 0013406
Kilogram-meter	98100000.	2.361	. 009369	9.81	1.	7.23314	. 013151
Foot-pound.............................	13562600.	. 3264	. 0012953	1.35626	${ }^{1 .} 13825$	1.	. 00181818
Horse-power-second	\ldots	179.5	. 7124	745.94	76.039	550.	

> Joule $=$ volt-coulomb $=$ watt for one second.
> Calorie $=$ gram-degree Centigrade.
> B. T. U. = British thermal unit $=$ pound-degree Fahrenheit.
MEASURES OF PRESSURE.

Names of units.	Atmospheres.	Pounds on square inch.	Inches of mercury at $32^{\circ} \mathrm{F}$.	Feet of water at $60^{\circ} \mathrm{F}$.	Millimeters of mercury at $32^{\circ} \mathrm{F}$.	$\begin{gathered} \text { Pounds } \\ \text { on } \\ \text { square foot. } \end{gathered}$	Kilograms on square meter.
Atmospheres..................................	1.	14.7	29.922	33.94	760.	2116.	10333.
Pounds on square inch 06803	1.	2.036	2.309	51.7	143.946	702.925
Inches of mercury at $32^{\circ} \mathrm{F}$...........	. 03342	.4913	1.	1.134	25.398	70.7	345.331
Feet of water at $60^{\circ} \mathrm{F}$................	. 02947	. 4332	. 8818	1.	22.399	62.35	304.565
Millimeters of mercury at $32^{\circ} \mathrm{F}$....	. 001316	. 01934	. 03937	. 04464	1	2.784	13.596
Pounds on square foot.................	. 0004726	. 006947	. 01414	. 01603	. 3592		4.883
Kilograms on square meter..........	. 00009677	. 001423	. 002895	. 003283	. 07355	. 2048	1.

[^0]
DECIMAL EQUIVALENTS OF PARTS OF AN INCH.

16ths.	32ds.	64ths.	Mils.	$16 \mathrm{ths}$.	32ds.	64ths.	Mils.
1	1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 15.625 \\ & 31.25 \\ & 46.875 \\ & 62.5 \end{aligned}$	9	17 18	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	515.625 531.25 546.875 562.5
2	3	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 78.125 \\ & 93.75 \\ & 109.375 \\ & 125 . \end{aligned}$	10	19 20	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	578.125 593.75 609.375 625.
3	5 6	$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\begin{aligned} & 140.625 \\ & 156.25 \\ & 171.875 \\ & 187.5 \end{aligned}$	11	21 22	41 42 43 44	
4	7 8	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	203.125 218.75 234.375 250.	12	23 24	45 46 47 48	
5	${ }^{9} 10$	$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 265.625 \\ & 281.25 \\ & 296.875 \\ & 312.5 \end{aligned}$	13	25 26	$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$	765.625 781.25 796.875 812.5
6	11 12	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	328.125 343.75 359.375 375.	14	27 28	$\begin{aligned} & 53 \\ & 54 \\ & 55 \\ & 56 \end{aligned}$	$\begin{aligned} & 828.125 \\ & 843.75 \\ & 859.375 \\ & 875 . \end{aligned}$
7	13 14	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$		15	29 30	$\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	890.625 906.25 921.875 937.5
8	15 16	$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & 453.125 \\ & 468.75 \\ & 484.375 \\ & 500 . \end{aligned}$	16	$\begin{aligned} & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 993.125 \\ & 968.75 \\ & 984.375 \\ & 1000 . \end{aligned}$

8 JOHN A. ROEBLING'S SONS $\mathbf{c o}$.

WIRE GAUGES IN MILS.

Numbers.	Roebling.	Brown \& Sharpe.	Birmingham or Stubs.	New British standard.
000000	460.*	464.
00000	430.	432.
0000	393.	460.	454.	400.
000	362.	409.6	425.	372.
00	331.	364.8	380.	348.
0	307.	324.9	340.	324.
1	283.	289.3	300.	300.
2	263.	257.6	284.	276.
3	244.	229.4	259.	252.
4	225.	204.3	238.	232.
5	207.	181.9	220.	212.
6	192.	162.	203.	192.
7	177.	144.3	180.	176.
8	162.	128.5	165.	160.
9	148.	114.4	148.	144.
10	135.	101.9	134.	128.
11	120.	90.74	120.	116.
12	105.	80.81	109.	104.
13	92.	71.96	95.	92.
14	80.	64.08	83.	80.
15	- 72.	57.07	72.	72.
16	63.	50.82	65.	64.
17	54.	45.26	58.	56.
18	47.	40.3	49.	48.
19	41.	35.89	42.	40.
20	35.	31.96	35.	36.
21	32.	28.46	32.	32.
22	28.	25.35	28.	28.
23	25.	22.57	25.	24.
24	23.	20.1	22.	22.
25	20.	17.9	20.	20.
26	18.	15.94	18.	18.
27	17.	14.2	16.	16.4
28	16.	12.64	14.	14.8
29	15.	11.26	13.	13.6
30	14.	10.03	12.	12.4
31	13.5	8.93	10.	11.6
32	13.	7.95	9.	10.8
33	11.	7.08	8.	10.
34	10.	6.8	7.	9.2
35	9.5	5.62	5.	8.4
36	9.	5.	4.	7.6

JOHN A. ROEBLING'S SONS CO.				
WIRE GAUGES IN MILLIMETERS.				
Numbers.	Roebling.	$\begin{aligned} & \text { Brown } \\ & \text { \& } \\ & \text { Sharpe. } \end{aligned}$	$\begin{gathered} \text { Birmingham } \\ \text { or } \\ \text { Stubs. } \end{gathered}$	New British standard.
$\begin{array}{r} 000000 \\ 00000 \\ 0000 \\ 000 \\ 00 \end{array}$	11.683	11.785
	10.921 9.982	11.683	11.531	10.972 10.16
	9.982 9.195	10.404	11.794	10.46 9.448
	8.407	9.266	9.652	8.839
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	7.798	8.251	8.636	8.229
	7.188 6.68	7.348	7.62	7.62
	6.68 6.198	6.544 5.827	7.213 6.579	6.401
	5.715		6.045	5.893
56789	5.257	4.621	5.588	5.385
	4.877	4.115	5.156	4.877
	4.496 4.115	3.665 3.263	4.572 4.191	4.47 4.064
	3.759	3.2006	${ }_{3.759}$	3.657
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	3.429	2.588	3.404	3.251
	3.048 2.667	2.305 2.052	3.048 2.768	2.947 2641
	2.337	1.828	2.413	2.337
	2.032	1.628	2.108	2.032
$\begin{array}{r} 15 \\ -\quad 16 \\ 17 \\ 18 \\ 19 \end{array}$	1.829	1.449	1.829	1.829
	1.6 1.372	1.291 1.15	- $\begin{array}{r}1.651 \\ \hline\end{array}$	1.626
	1.194	1.024	1.245	1.219
	1.041	. 9116	1.067	1.016
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$. 889	. 8118	. 889	. 9144
	. 8128	$\begin{array}{r}.7229 \\ 643 \\ \hline\end{array}$. 8128	. 8128
	. 635	. 6738	. 6112	. 6096
	. 5842	. 5105	. 5588	. 5588
2526272829	. 508	. 4546	. 508	. 508
	.4572	. 4049	. 4572	. 4572
	. 4318	. 3605	. 4064	.4166 .375
3031323334	. 3556	. 2545	. 3048	. 315
	. 3429	. 2267	. 254	. 2946
	.3302 .2794	.2019 .179	. 22286	.274 8
	. 254			
3536	. 2413	. 1426		. 2134
	. 2286	. 127	. 1016	. 193

TABLES OF SPECIFIC GRAVITIES.

Metals.

Names of metals.	Specific gravity.	Weights per cubic foot.	Specific heat.	Melting point in degrees Fahrenheit.
Aluminum, cast............	$2.5{ }^{1}$	156.06	. 2143*
"، hammered.	$2.67{ }^{1}$	166.67	
Antimony	6.702^{3}	418.37	. 0508	810.
Arsenic........................	5.763^{3}	359.76	. 0814	365.
Barium..........	$4 .{ }^{3}$	249.7
Bismuth......................	9.822^{2}	613.14	. 0308	497.
Cadmium	8.604^{5}	537.1	. 0567	500.
Calcium	1.566^{4}	97.76
Chromium.....................	7.3^{6}	455.7	7107*********)
Cobalt	8.6	536.86	. 107
Copper...	8.895^{7}	555.27	. 0951	1996.
if rolled.................	8.878^{2}	554.21**
* cast....................	$8.788{ }^{2}$	548.59*
* drawn................	8.9463^{8}	558.47*	,
* hammered.........	8.9587^{3}	659.25
" pressed.	$8.931{ }^{\circ}$	55752**
" electrolytic........	$8.914^{\text {c }}$	556.46	
Gold.............................	19.258^{2}	1202.18	. 0324	2016.
Iron, bar......................	7.483°	467.18	. 13	2786.
" wrought...............	7.79	486.29	. 113	3286.
Steel.............................	7.85	490.03	. 116	3286.
Lead..............................	$11445{ }^{10}$	714.45	. 0314	612.
Magncsinm..................	$2.24{ }^{11}$	139.83	.2499	\%......
Manganese..	${ }_{6.912}$	430.73	. 114	3000.
Mercury.......................	13.568^{13}	846.98	. 0319	-38.
Nickel	7.832	488.91	.1091	2800.
Platinum.......................	$20.3{ }^{2}$	1267.22	. 0324	3286.
Potassium......................	. 865^{14}	54.	.1696	136.
Silver............................	10.522^{11}	656.84	. 057	1873.
Sodium.........................	. $972{ }^{14}$	60.68	.2934	194.
Strontium...................	2.504^{4}	156.31		
Tin...............................	7.291^{2}	455.14	. 0562	442.
Zinc	6.861^{*}	428.29	. 0955	773.

1. Wöhler.
2. Brisson.
3. Clarke.
4. Matthlessen.
5. Stromeyer.
6. Bunsen.
7. Hatchett.
8. Brezeníus.
9. Marchand \& Scheerer.
10. Musscheubroek.
11. Play fair \& Joule.
12. Bergman.
13. Watts' Dictionary.
14. Gay-Lussac \& Thenard.

TABLES OF SPECIFIC GRAVITIES.-(Cont.)

 Liquids.| Names of liquids. | Specific gravity. | Temperatures. |
| :---: | :---: | :---: |
| Alcohol.. | 0.81571 | At $50^{\circ} \mathrm{F}$. |
| Benzine..................... | 0.883 | At $59^{\circ} \mathrm{F}$. |
| Chloroform........................ | 1.491 | At $62.6{ }^{\circ} \mathrm{F}$. |
| Carbon bisulphide................ | 1.2931 | At $32^{\circ} \mathrm{F}$. |
| Ether......................... | 0.7204 | At $60.8^{\circ} \mathrm{F}$. |
| Glycerine | 1.2636 | At $59{ }^{\circ} \mathrm{F}$. |
| Hydrochloric acid................. | 1.27 | |
| Mercury | 13.596 | At $32^{\circ} \mathrm{F}$. |
| Nitric acid........................... | 1.552 | At $59^{\circ} \mathrm{F}$. |
| Oil of turpentine | 0.855 to 0.864 | At $68{ }^{\circ} \mathrm{F}$. |
| Linseed oil......................... | 0.94 | |
| Olive oil.............................. | 0.915 | |
| Sulphuric acld...................... | 1.854 | At $32^{\circ} \mathrm{F}$. |

Gases.

Names of gases.	At $0^{\circ} \mathrm{C}$. and 760 mm. pressure compared to water	At $0^{\circ} \mathrm{C}$. and 760 mm. pressure compared to air
Air...	0.0012928	1.
Oxygen....	0.0014293	1.10563
Nitrogen...........................	0.0012557	0.97137
Hydrogen.....	0.00008954	0.06926
Carbonic dioxide	0.0019767	1.5291
Mixed gases from electro- lysis of water..................	0.0005861	0.41472
Aqueous vapor	0.623

WEIGHTS OF SUBSTANCES.

Names of substances.	Average weight per cubic foot. Pounds.
Aspbaltum..	87.
Brick, common, hard..	125.
Brickwork, pressed brick...	140.
Coal, anthracite, solid, of Penusylvania....................	112. 93.
" "6 broken, loose......................	54.
" bituminous, solid...	84.
" ${ }^{\text {" }}$, broken; loose......	49.
Coke, loose, of good coal......	62.
Cork...........	12.4
Earth, common loam, dry, loose	76.
" moderately rammed.....	95.
Gneiss, common........ ...	168.
Granite..............	170.
Glass, Crown...................	168.5
" flint.	218.3
Ice at $0^{\circ} \mathrm{C}$.	57.2
Lime, thoroughly shaken..................................	755.
Masonry, of granite or limestone, well dressed	165.
Mortar, hardened	103.
Mud, dry, close.	80 to 1
Quartz....................................	165.4
Sulphur.	131.7
Wax...	58.7
Wood, ebony...	74.9
" birch	43.7
" oak.	46.8
" pine	31.2
Water at $32^{\circ} \mathrm{F}$.	62.418
" " 39.1${ }^{\circ}$ F...	62.425
" " $50^{\circ} \mathrm{F}$.	62.409
" " $60^{\circ} \mathrm{F}$..................	62.367
" " $70^{\circ} \mathrm{F}$	62.302
" " $80^{\circ} \mathrm{F}$.	62.218
	62.119

THE COMPARISON OF THERMOMETERS．

Fahrenheit to Centigrade．
$\left(t^{\circ} \mathbf{F} .-32\right) \times{ }^{5}=$ Degrees \mathbf{C} ．

		高							
50	10.	61	16.1	72	22.2	83	28.3	94	34.4
51	10.6	62	16.7	73	22.8	84	28.9	95	35.
52	11.1	63	17.2	74	23.3	85	29.4	96	35.6
53	11.7	64	17.8	75	23.9	86	30.	97	36.1
54	12.2	65	18.3	76	24.4	87	30.6	98	36.7
55	12.8	66	18.9	77	25.	88	31.1	99	37.2
56	13.3	67	19.4	78	25.6	89	31.7	100	37.8
57	13.9	68	20.	79	26.1	90	32.2		
58	14.4	69	20.6	80	26.7	91	32.8		
59	15.	70	21.1	81	27.2	92	33.3		
60	15.6	71	21.7	82	27.8	93	33.9		

Centigrade to Fahrenheit．

of ${ }^{\circ} \mathrm{C}+32=$ Degrees F ．

	$\begin{aligned} & \text { 苋 } \\ & \text { 品 } \\ & \text { H } \\ & \text { d } \\ & \text { ⿷匚 } \end{aligned}$						
10	50.	18	64.4		78.8	34	93.2
11	51.8	19	66.2	27	80.6	35	95.
12	53.6	20	68.	28	82.4	36	96.8
13	55.4	21	69.8	29	84.2	37	98.6
14	57.2	22	71.6	30	86.	38	100.4
15	59.	23	73.4	31	87.8	39	10.2
16	60.8	24	75.2	32	89.6	40	104.
17	62.6	25	77.	33	91.4		

ELECTRICAL UNITS.

Final and offlial recommendation of the Chamber of Delegates of the International Electrical Congress, held at Chicago, 1893.

Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the international ohm, which is based upon the ohm equal to 10^{9} units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grams in mass, of a constant cross-sectional area and of the length of 106.3 centimeters.

As a unit of current, the international ampere, which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, ${ }^{1}$ deposits silver at the rate of 0.001118 of a gram per second.

[^1]As a unit of electro-motive force, the international volt, which is the electro-motive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by $\frac{10}{1009}$ 年 of the electro-motive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of $15^{\circ} \mathrm{C}$., and prepared in the manner described in the accompanying specification. ${ }^{2}$

As a unit of quantity, the international coulomb, which is the quantity of electricity transferred by a current of one international ampere in one second.

As a unit of capacity, the international farad, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.

As a unit of work, the joule, which is equal to 10^{7} units of work in the C. G. S. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.

As a unit of power, the watt, which is equal to 10^{7} units of power in the C. G. S. system, and which is represented sufficiently well for practical use by work done at the rate of one joule per second.

As the unit of induction, the henry, which is the induction in a circuit when the electro-motive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second.

[^2]
COPPER WIRE.

I
N THE following tables of copper wire the value of the mil-foot is taken as the standard.
The temperature coëfficient is interpolated for $60^{\circ} \mathrm{F}$. and $75^{\circ} \mathrm{F}$. from the values given in the second table.

In the table for B. \& S. G., the actual sizes to which wire is drawn, are used.

In many cases the nearest whole number of pounds is taken when the variation is less than that found in actual weights of drawn wire.

In computing the weights, the specific gravity of copper is taken at 8.89 , water being at its greatest density 62.425 pounds per cubic foot.

International ohms are used, unless the kind of unit is specifically stated.

The following formulæ were used:

$$
\begin{aligned}
& \text { Resistance per } 1000 \text { feet at } 60^{\circ} \mathrm{F} .=\frac{10180.694}{\mathrm{~d}^{2}} \\
& \text { Resistance per } 1000 \text { feet at } 75^{\circ} \mathrm{F} .=\frac{10507.4}{\mathrm{~d}^{2} .} \\
& \text { Weight per } 1000 \text { feet }=.003027 \times \mathrm{d}^{2} . \\
& \text { Weight per mile }=.015983 \times \mathrm{d}^{2} .
\end{aligned}
$$

The following data and formulæ may be useful:
One B. A. unit $=.9889$ legal ohms $=.9866$ International ohms.
One legal ohm $=1.01122$ B. A. units $=.99767$ International ohms. One International ohm $=1.01358$ B. A. units $=1.00233$ legal ohms. One cubic foot of copper weighs 555 pounds. One cubic inch of copper weighs .3212 pounds.

$$
\begin{aligned}
& \text { Resistance per } 1000 \text { feet at } 60^{\circ} \mathrm{F} .=\frac{30.815}{\text { weight per } 1000 \text { feet. }} \\
& \text { Resistance per } 1000 \text { feet at } 75^{\circ} \mathrm{F} .=\frac{31.804}{\text { weight per } 1000 \text { feet. }}
\end{aligned}
$$

If a copper wire of length l, diameter d, and weight w, has a resistance R at temperature t, then its conductivity
by diameter is given by the first formula, and by weight by the second.

$$
\begin{array}{ll}
C=\frac{a 1 k}{d^{2} R .} & R t^{\circ}=\frac{a 1 k}{d^{2}} \\
C=\frac{b l^{2} c}{w R .} & R t^{\circ}=\frac{b l^{2} c}{w .}
\end{array}
$$

Here, a is the resistance of a mil-foot in same units as R, k is the temperature coëfficient for t° Centigrade, and b is the resistance of one meter-gram at temperature t° and in same units as R.

> When 1 is in meters and w in grams, $c=1$.
> When 1 isin feet and w in grams, $c=.0929$.
> When 1 is in feet and w in pounds, $c=.0002048$.

Mile-ohm $=$ weight per mile \times resistance per mile.

$$
\begin{aligned}
& \text { Mile-ohm at } 60^{\circ}=859 \text {, International ohms. } \\
& \text { Mile-ohm at } 60^{\circ}=868.9, \text { B. A. units. } \\
& \text { Mile-ohm at } 60^{\circ}=861, \text { Legal ohms. }
\end{aligned}
$$

The following tables are taken from the report of the Standard Wiring Table Committee, published in the report of the meeting of the American Institute of Electrical Engineers, held January 17, 1893 :

MATTHIESSEN'S STANDARD.

(Recommended by the Committee).

Equivalent length of a square mm . mercury column.	B. A. units.	Legal ohms.	International ohms.
	104.8 cms .	106.0 cms.	106.3 cms .
Resistance at $0^{\circ} \mathbf{C}$. of Matthiessen's Standard-Meter-gram soft copper.	.14365.02057	. 14206	
			. 14173
Meter-millimeter soft copper.		. 02035	. 0203
Cubic centimeter soft cop-			
mil-foot soft copper..................................	9.000001616	$\begin{array}{r} .000001598 \\ 9.612 \end{array}$	$\text { .000 } 001594$

TEMPERATURE COËFFICIENTS.

Table of temperature variations in the resistance of pure soft copper according to Matthiessen's standard and formulæ.

			Matthiessen meter-gram standard resistance.		
			B. A. units.	Legal ohms.	International ohms.
0	1.	0.	0.14365	0.14206	0.14173
1	1.003876	0.0016801	0.14421	0.14261	0.14228
2	1.007764	0.0033588	0.14477	0.14317	0.14283
3	1.01166	0.0050362	0.14533	0.14372	0.14338
4	1.01558	0.0067121	0.14589	0.14427	0.14394
5	1.0195	0.0083864	0.14645	0.14483	0.14449
6	1.02343	0.0100593	0.14702	0.14539	0.14505
7	1.02738	0.0117307	0.14759	0.14595	0.14561
8	1.03134	0.0134003	0.14815	0.14651	0.14617
9	1.03531	0.0150683	0.14873	0.14708	0.14673
10	1.03929	0.0167346	0.1493	0.14764	0.1473
11	1.04328	0.0183993	014987	0.14821	0.14786
12	1.04728	0.0200621	0.15045	0.14878	0.14843
13	1.05129	0.021723	0.15102	0.14935	0.149
14	1.05532	0.0233821	0.1516	0.14992	0.14957
15	1.05935	0.025039	0.15218	0.15049	0.15014
16	1.06339	0.026694	0.15277	0.15107	0.15071
17	1.06745	0.028348	0.15334	0.15164	0.15129
18	1.07152	0.029999	0.15393	0.15222	0.15186
19	1.07559	0.803164	0.15451	0.1528	0.15244
20	1.07968	0.033294	0.1551	0.15338	0.15302
21	1.08378	0.034939	0.15569	0.15396	0.1536
22	1.08788	0.036581	0.15628	0.15455	0.15418
23	1.092	0.038222	0.15687	0.15513	0.15477
24	1.09612	0.039859	0.15746	0.15572	0.15535
25	- 1.10026	0.041494	0.15806	0.15631	0.15594
26	1.1044	0.043127	0.15865	0.15689	0.15653
27	1.10856	0.044758	0.15925	0.15748	0.15711
28	1.11272	0.046385	0.15985	0.15808	0.1577
29	1.11689	0.048011	0.16044	0.15867	0.1588
	1.12107	0.049633	0.16105	0.15926	0.15889
40	1.16332	0.065699	0.16711	0.16526	0.16488
50	1.20625	0.081436	0.17328	0.17136	0.17095
60	1.24965	0.096787	0.17952	0.17753	0.17711
70	1.29327	0.111687	0.18578	0.18372	0.18329
80	1.33681	0.126069	v. 19204	0.18991	0.18946
90	1.37995	0.139863	0.19823	0.19604	0.19558
100	142231	0.152995	0.20432	0.20206	0.20158

PROPERTIES OF COPPER WIRE.

English system-Brown \& Sharpe gauge.

			Weights.		Resistances per 1000 feet in Interuational ohms.	
			$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.	At $60^{\circ} \mathrm{F}$.	At $75^{\circ} \mathrm{F}$.
0000	460.	211600.	641.	3382.	. 04811	. 04966
000	410.	168100.	509.	2687.	. 06056	. 06251
00	365.	133225.	403.	2129.	. 07642	. 07887
0	325.	105625.	320.	1688.	. 09639	. 09948
1	289.	83521.	253.	1335.	. 1219	. 1258
2	258.	66564.	202.	1064.	. 1529	. 1579
3	229.	52441.	159.	838.	. 1941	. 2004
4	204.	41616.	126.	665.	. 2446	. 2525
5	182.	33124.	100.	529.	. 3074	. 3172
6	162.	26244.	79.	419.	. 3879	. 4004
7	144.	20736.	63.	331.	. 491	. 5067
8	128.	16384.	50.	262.	. 6214	.6413
9	114.	12996.	39.	268.	. 7834	. 8085
10	102.	10404.	32.	166.	. 9785	1.01
11	91.	8281.	25.	132.	1.229	1.269
12	81.	6561.	20.	105.	1.552	1.601
13	72.	5184.	15.7	83.	1.964	2.027
14	64.	4096.	12.4	65.	2.485	2.565
15	57.	3249.	9.8	52.	3.133	3.234
16	51.	2601.	7.9	42.	3.914	4.04
17	45.	2025.	6.1	32.	5.028	5.189
18	40.	1600.	4.8	25.6	6.363	6.567
19	36.	1296.	3.9	20.7	7.855	8.108
20	32.	1024.	3.1	16.4	9.942	10.26
21	28.5	812.3	2.5	13.	12.53	12.94
22	25.3	640.1	1.9	10.2	15.9	16.41
23	22.6	510.8	1.5	8.2	19.93	20.57
24	20.1	404.	1.2	6.5	25.2	26.01
25	17.9	320.4	. 97	5.1	31.77	32.79
26	15.9	252.8	. 77	4.	40.27	41.56
27	14.2	201.6	. 61	3.2	50.49	52.11
28	12.6	158.8	. 48	2.5	64.13	66.18
29	11.3	127.7	. 39	2.	79.73	82.29
30	10.	100.	. 3	1.6	101.8	105.1
31	8.9	79.2	. 24	1.27	128.5	132.7
32	8.	64.	. 19	1.02	159.1	164.2
33	7.1	50.4	. 15	. 81	202.	208.4
34	6.3	39.7	. 12	. 63	256.5	264.7
35	5.6	31.4	. 095	. 5	324.6	335.1
36	5.	25.	. 076	. 4	407.2	420.3

PROPERTIES OF COPPER WIRE.-(Cont.)

English system-Birmingham wire gavge.

			Weights.		Resistances per 1000 feet in International ohms.	
			$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.	At $60^{\circ} \mathrm{F}$.	At $75^{\circ} \mathrm{F}$.
0000	454.	206116.	624.	3294.	. 04939	. 05098
000	425.	180625.	547.	2887.	. 05636	. 05817
00	380.	144400.	437.	2308.	. 0705	. 07277
0	340.	115600.	350.	1817.	. 08807	. 09089
1	300.	90000.	272.	1438.	. 1131	. 1167
2	284.	80656.	244.	1289.	.1262	. 1303
3	259.	67081.	203.	1072.	. 1518	. 1566
4	238.	56644.	171.	905.	. 1797	. 1855
5	220.	48400.	146.	773.	.2103	. 2171
6	203.	41209.	125.	659.	. 2471	. 255
7	180.	32400.	98.	518.	. 3142	
8	165.	27225.	82	435.	. 8739	. 3859
9	148.	21904.	66.	350.	. 4648	. 4797
10	134.	17956.	54.	287.	. 567	. 5852
11	120.	14400.	44.	230.	. 707	. 7297
12	109.	11881.	36.	190.	. 8569	. 8844
13	95.	9025.	27.3	144.	1.128	1.164
14	83.	6889.	20.8	110.	1.478	1.525
15	72.	5184.	15.7	83.	1.964	2.027
16	65.	4225.	12.8	68.	2.41	2.487
17	58.	3364.	10.2	54	3.026	3.123
18	49.	2401.	7.3	38.4	4.24	4.376
19	42.	1764.	5.3	28.2	5.771	5.957
21	35.	1225.	3.7	19.6	- 8.311	8.577
21	32.	1024.	3.1	16.4	9.942	1026
22	28.	784.	2.4	12.5	12.99	13.4
23	25.	625.	1.9	10.	16.29	16.81
24	22.	484.	1.5	7.7	21.03	21.71
25	20.	400.	1.2	6.4	25.45	26.27
26	18.	324.	. 98	52	31.42	32.43
	16.			4.1	39.77	41.04
28	14.	196.	. 59	3.1	51.94	53.61
29	13.	169.	. 51	2.7	60.24	62.17
30	12.	144.	. 44	2.3	70.7	72.97
31	10.	100.	. 3	1.6	108.	105.1
	9.	81.	. 25	1.3	125.7	129.7
33	8.	64.	.19	1.02	159.1	164.2
34	7.	49.	. 15	. 78	207.8	214.4
35	5.	25.	. 075	.4	407.2	420.3
36	4.	16.	. 048	256	636.3	656.7

PROPERTIES OF COPPER WIRE.-(Cont.)

English system-New British standard gange.

$\begin{aligned} & \text { 总 } \\ & \text { 曾 } \\ & \frac{\square}{4} \end{aligned}$			Weights.		Resistances per 1000 feet in International ohms.	
			$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.	At $60^{\circ} \mathrm{F}$.	At $75^{\circ} \mathrm{F}$.
000000	464.	215296.	652.	3441.	. 04729	. 0488
00000	432.	186624.	565.	2983.	. 05455	. 0563
0000	400.	160000.	484.	2557.	. 06363	. 06567
000	372	138384.	419.	2212.	. 07357	. 07593
00	348.	121104.	367.	1935.	. 08407	. 08676
0	324.	104976.	318.	1678.	. 9698	. 10009
	300.	90000.	272.	1438.	. 1131	. 1167
2	276.	76176.	231.	1217.	. 1336	. 1379
3	252.	63504.	192.	1015.	. 1603	. 1655
4	232.	53824.	163.	860.	. 1892	. 1952
5	212.	44914.	136.	718.	. 2265	. 2338
6	192.	36864.	112.	589.	. 2762	. 285
7	176.	30976.	94.	495.	. 3287	. 3392
8	160.	25600.	77.	409.	. 3977	. 4104
9	144.	20736.	63.	331.	. 491	. 5067
10	128.	16384.	50.	262.	. 6214	. 6413
11	116.	13456.	41.	215.	. 7566	. 7809
12	104.	10816.	33.	173.	.9413	. 9715
13	92.	8464.	25.6	135.	1. 203	1.241
14	80.	6400.	19.4	102.	1.591	1.642
15	72.	5184.	15.7	83.	1.964	2.027
16	64.	4096.	12.4	65.	2.486	2.565
17	56.	3136.	9.5	50.	3.246	3.351
18	48.	2304.	7.	36.8	4.419	4.561
19	40.	1600.	4.8	25.6	6.363	6.567
20	36.	1296.	3.9	20.7	7.855	8.108
21	32.	1024.	3.1	16.4	9.942	10.26
22	28.	784.	2.4	12.5	12.99	13.4
23	24.	576.	1.7	9.2	17.67	18.24
24	22.	484.	1.5	7.7	21.03	21.71
25	20.	400.	1.2	6.4	25.45	26.27
26	18.	324.	. 98	5.2	31.42	32.43
27	16.4	269.	. 81	4.3	37.85	39.07
28	14.8	219.	. 66	8.5	46.48	47.97
29	13.6	185.	. 56	3.	55.04	56.81
30	12.4	153.8	. 47	2.5	66.21	68.34
81	11.6	134.6	. 41	2.15	75.66	78.09
32	10.8	116.6	. 35	1.86	87.28	90.08
33	10.	100.	. 3	1.6	101.8	105.1
34	9.2	84.6	. 26	1.35	120.3	124.1
35	8.4	70.6	. 21	1.13	144.3	148.9
36	7.6	57.8	. 17	. 92	176.3	181.9

PROPERTIES OF COPPER WIRE.-(Cont.)

Metric system-Brown \& Sharpe gauge.

$\begin{aligned} & \text { 韋 } \\ & \text { 8 } \\ & \text { 总 } \\ & \text { Z } \end{aligned}$				Resistances per kilometer in International ohms.	
				At $60^{\circ} \mathrm{F}$.	At $75^{\circ} \mathrm{F}$.
0000	11.683	107.2	954.3	.1578	. 1629
000	10.404	85.01	756.8	. 1987	. 2051
00	9.266	67.43	600.2	. 2507	. 2588
0	8.251	53.47	480.4	. 3162	. 3264
1	7.348	42.41	377.4	. 3999	. 4127
2	6.544	33.63	299.3	. 5018	. 5179
3	5.827	26.67	237.4	. 6369	. 6574
4	5.19	21.16	188.3	. 8026	. 8284
5	4.621	16.77	149.3	1.009	1.041
6	4.115	13.3	118.4	1.273	1.314
7	3.665	10.55	93.9	1.611	1.662
8	3.263	8.362	74.5	2.039	2.104
9	2.906	6.633	59.	2.57	2.653
10	2.588	5.26	46.8	3.21	3.313
11	2.305	4.173	37.1	4.033	4.163
12	2.052	3.307	29.5	5.091	5.253
13	1.828	2.625	23.4	6.443	6.65
14	1.628	2.082	18.5	8.155	8.416
15	1.449	1.649	14.7	10.28	10.61
16	1.291	1.309	11.7	12.84	13.25
17	1.15	1.039	9.23	16.5	17.02
18	1.024	. 8236	7.32	20.88	21.55
19	. 9116	. 6527	5.8	25.77	26.6
20	. 8118	. 5176	4.61	32.62	33.66
21	.7229	.4104	3.65	41.11	42.45
22	. 6438	. 3255	2.89	52.16	53.84
23	. 5733	. 2581	2.16	65.39	- 67.49
24	. 5105	. 2047	1.82	82.68	85.33
25	. 4546	. 1623	1.44	104.2	107.6
26	. 4049	. 1288	1.15	132.1	136.3
27	.8605	.1021	. 908	165.1	171.
28	. 3211	. 081	. 72	210.4	217.1
29	. 2859	. 0642	. 572	261.6	270.
30	. 2545	. 0509	. 452	334.	344.8
31	. 2267	. 0404	. 359	421.6	435.4
32	.2019	. 032	. 284	522.	538.7
33	. 1798	. 0254	. 226	662.7	683.7
34	. 1601	. 0201	. 179	841.5	868.4
35	. 1426	. 016	. 141	1065.	1099.
36	. 127	. 0127	. 113	1336.	1379.

WEIGHTS OF COPPER WIRE.

Metric system-per kilometer, in kilograms.

Numbers.	Roebling.	Brown \& Sharpe.	Birmingham or Stubs.	New British standard.
000000	954.3*	970.9
00000	833.9	*.......	841.6
0000	696.5	954.3	929.4	721.5
000	591.	756.8	814.5	624.
	494.1	600.2	651.3	546.2
0	425.1	480.4	521.3	473.4
1	361.2	377.4	405.8	405.8
2	311.9	299.3	363.3	343.5
3	268.5	237.4	302.6	286.3
4	228.3	188.3	255.3	-242.7
5	193.2	149.3	218.3	202.7
6	166.2	118.4	185.9	166.2
7	141.3	93.9	146.1	139.7
8	118.3	74.5	122.8	115.4
9	98.8	59.	98.8	93.5
10	82.2	46.8	81.	78.9
11	64.9	37.1	64.9	60.7
12	49.9	29.5	53.6	48.8
13	38.2	23.4	39.8	38.2
14	28.9	18.5	31.1	28.9
15	23.4	14.7	23.4	23.4
16	17.9	11.7	19.1	18.5
17	13.2	9.23	15.2	14.1
18	9.96	7.32	10.8	10.4
19	7.58	5.8	7.95	7.22
20	5.52	4.61	5.52	5.85
21	4.61	3.65	4.62	4.61
22	3.54	2.89	3.54	3.54
23	2.81	2.16	2.81	2.59
24	2.38	1.82	2.19	2.19
25	1.8	1.44	1.8	1.8
26	1.46	1.15	1.46	1.46
27	1.3	. 908	1.16	1.21
28	1.15	. 72	. 884	. 988
29	1.02	. 572	. 762	. 833
30	. 884	. 452	. 649	. 694
31	. 822	. 359	. 451	. 607
32	. 762	. 284	. 365	. 525
33	. 544	. 2226	. 289	. 451
34	. 451	. 179	. 22	. 381
35	.406	. 141	. 113	. 319
36	. 365	. 113	. 071	. 26

HARD-DRAWN COPPER WIRE.

British Post-office specifications.

"The wire shall be capable of being wrapped in six turns around wire of its own diameter, unwrapped and again wrapped in six turns around wire of its own diameter in the same direction as the first wrapping, without breaking; and shall be also capable of bearing the number of twists set down in the table, without breaking.
"The twist-test will be made as follows: The wire will be gripped by two vises, one of which will be made to revolve at a speed not exceeding one revolution per second. The twists thus given to the wire will be reckoned by means of an ink mark which forms a spiral on the wire during torsion, the full number of twists to be visible between the vises."

According to the above table, the mile-ohm of copper required is 878 pounds. This corresponds to a conductivity of 96.6 per cent., taking the value of the mile-ohm of 100 per cent. copper as 859 .
HARD－DRAWN COPPER WIRE．－（Continued．）

Numbers．	Diameters in mils．			Weights per mile．			Breaking weights．			Weights of coils．		Conduc－ tivity．			
			$\begin{aligned} & \text { 者 } \\ & \text { 品 } \\ & \end{aligned}$		見			$\begin{aligned} & \text { 플 } \\ & \text { 苐 } \\ & \text { 品 } \end{aligned}$		关 悲 感	$\begin{aligned} & \text { 品 } \\ & \text { 豆 } \\ & \text { ㄹ } \end{aligned}$		$\begin{aligned} & \text { gi } \\ & \text { 品 } \\ & \text { 员 } \end{aligned}$		
8 B．W．G．．．．．．．	165.	166.	164.	436.4	441.7	431.1	1328	1301	62100	218	152	97	96	30	1.14
$12 \mathrm{~N} . \mathrm{B} . \mathrm{S} . \mathrm{G}$. ，	104.	104.9	103.1	173.4	176.4	170.4	549	538	64600	219	151	97	96	40	1.
$10 \mathrm{~B} . \&$ S．G．．．	101.9	102.8	101.	165.	168.	162.	540	519	64800	218	152	97	96	40	． 99
12 B．\＆S．G．．．	80.	81.2	79.3	102.6	105.7	100.8	334	327	66500	72	52	97	96	44	． 94
14 B．\＆S．G．．．	64.	65.	63.	65.	67.5	63.	220	212	68200	．．．．．	．．．．．	97	96	47	． 91

TENSILE STRENGTH OF COPPER WIRE.

Numbers, B. \& S. G.	Breaking weight. Pounds.		Numbers, B. \& S. G.	Breaking weight. Pounds.	
	Harddrawn.	Annealed.		Harddrawn.	$\underset{\text { An- }}{\text { nealed. }}$
0000	8310	5650	9	617	349
000	6580	4480	10	489	277
00	5226	3553	11	388	219
0	4558	2818	12	307	174
1	3746	2234	13	244	138
2	3127	1772	14	193	109
3	2480	1405	15	153	87
4	1967	1114	16	133	69
5	1559	883	17	97	55
6	1237	700	18	77	43
7	980	555	19	61	34
8	778	440	20	48	27

The strength of soft copper wire varies from 32000 to 36000 pounds per square inch, and of hard copper wire from 45000 to 68000 pounds per square inch, according to the degree of hardness.

The above table is calculated for 34000 pounds for soft wire and 60000 pounds for hard wire, except for some of the larger sizes, where the breaking weight per square inch is taken at 50000 pounds for 0000,000 and 00,55000 for 0 , and 57000 pounds fur 1 .

BI-METALLIC WIRE.

Numbers, B. \& S. G.	Diameters in mils.	Weights per mile. Pounds.	Breaking weight. Pounds.
0000	460	3200	10500°
000	410	2537	8600
00	365	2022	7000
0	325	1620	5700
1	289	1264	4600
2	258	1003	3800
3	229	797	3200
4	204	629	2600
5	182	490	1790
6	162	398	1500
7	144	314	1210
8	128	246	1020
9	114	203	850
10	102	157	660
11	91	127	520
12	81	100	410
14	64	63	260
16	51	40	160
18	40	25	100

This wire consists of a steel center with a cover of copper. Its conductivity is about 65 per cent. of that of pure copper. The percentage of copper and steel may vary a trifle, hence the strength and weight must be approximate.

STRANDS OF COPPER WIRE.

COPPER WIRES are laid up into concentric strands or into ropes of seven strands. A rope of seven strands each composed of seven wires, is called a seven by seven rope, and is usually written 7×7. The number of wires that can be made into a strand is limited by the capacity of the stranding machinery. Two hundred wires is the usual limit of a concentric strand, and one hundred and thirty-three wires of a rope.

In a strand of circular milage, C. M., composed of n wires of diameter d, with a weight per 1000 feet w, then we have

$$
\text { C. } \begin{aligned}
\mathrm{M} . & =\mathrm{d}^{2} \times \mathrm{n} . \\
\mathrm{n} & =\frac{\mathrm{C} \cdot \mathrm{M} .}{\mathrm{d}^{2}} \\
\mathrm{~d} & =\sqrt{\frac{\mathrm{C} \cdot \mathrm{M}}{\mathrm{n}}} \\
\mathrm{w} & =.00305 \times \mathrm{C} . \mathrm{M} .
\end{aligned}
$$

The weights of strands are calculated about one per cent. heavier than a solid wire of the same circular milage, while the resistance is calculated for the solid wire.

In specifying how a strand shall be made, the number of wires to be used or the diameter of each wire may be given. In the first case the wire usually has to be specially drawn, and this will delay an order, especially a small order, unduly. It is, therefore, better to specify the size wires B. \&. S. G., of which the strand is to be made.

The diameter of a strand may be calculated by multiplying the dianeter of one wire by the factors given in the table at the bottom of the opposite page, according to the number of wires composing the strand.

STRANDS OF COPPER WIRE.

Diameters and properties.

	Circular mils.	Diameters.		Weights.		
		Decimal parts of inch.	$\begin{gathered} \text { Nearest } \\ 32 \mathrm{~d} . \end{gathered}$	$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.	
........	1000000	1.152	$1 \frac{3}{16}$	3050	16104	. 01051
........	950000	1.125	11/8	2898	15299	. 01106
........	900000	1.092	$1{ }^{31}$	2745	14494	. 01167
........	850000	1.062	$1 \frac{1}{18}$	2593	13688	. 01236
........	800000	1.035	$1 \frac{1}{31}$	2440	12883	. 01313
...	750000	. 999	1	2288	12078	. 01401
....	700000	. 963	${ }^{3}$	2135	11273	. 01501
........	650000	. 927	$\frac{15}{18}$	1983	10468	:016 17
........	600000	. 891	弱	1830	9662	. 01751
........	550000	. 855	7/8	1678	8857	. 0191
........	500000	. 819	18	1525	8052	. 02101
.......	450000	. 770	$\frac{35}{5}$	1373	7247	. 02335
........	400000	. 728	3/4	1220	6442	. 02627
........	350000	. 679	118	1068	5636	. 03002
\ldots	300000	. 630	5/8	915	4831	. 03502
	250000	. 590	${ }^{\frac{19}{2}}$	762	4026	. 04203
0000	211600	. 530	${ }_{17} \frac{1}{2}$	645	3405	. 04966
000	168100	. 470	㗣	513	2709	. 06251
00	133225	. 420	${ }^{70}$	406	2144	. 07887
0	105625	. 375	8/8	322	1700	. 09948
1	83521	. 330	3	255	1346	. 1258
2	66564	291	${ }^{18}$	203	1072	. 1579
3	52441	. 261	$\frac{8}{37}$	160	845	. 2004
4	41616	. 231	1/4	127	671	. 2525

Numbers of wires.	Factors.	Numbers of wires.	Factors.
3	$21 / 4$	75	
7	3	91	$101 / 4$
12	$41 / 4$	108	11
19	5127	$121 / 4$	
27	$61 / 4$	147	13
37	7	169	$141 / 4$
48	$81 / 4$	192	15
61	9	217	$161 / 4$
7×7	9	$\ldots .$.	17
7×19	15	$\ldots .$.	

NUMBERS OF WIRES IN STRANDS.

a	Numbers, Brown \& Sharpe gaug																
	8	10	11	12	13	14	15	16	17	18	19	20	22	25	28	30	B. $12 \mathrm{~N} . \mathrm{G}$.
	Number of wires in strands.																
1000000 950000 800000 800000	61. $\stackrel{58}{54.9}$ 51.9 48.8	96.191.386.581.776.9	$\begin{gathered} 120.8 \\ 114.8 \\ 108.7 \\ 102.7 \\ 96.6 \end{gathered}$	$\begin{aligned} & 152.4 \\ & 144.8 \\ & 137.2 \\ & 129.5 \\ & 121.9 \end{aligned}$	$\begin{aligned} & 192.9 \\ & 183.2 \\ & 173.6 \\ & 164.6 \\ & 154.3 \end{aligned}$	$\begin{aligned} & 244.1 \\ & 23.9 \\ & 219.7 \\ & 207.5 \\ & 195.3 \end{aligned}$	$\begin{aligned} & 307.8 \\ & 292.4 \\ & 277 . \\ & 271.6 \\ & 246.2 \end{aligned}$	384.5 365.3 346.1 326.8 307.6	493.8 469.1 44.5 419.8 395.1	$500 .$	$\begin{aligned} & 771.6 \\ & 73.6 \\ & 69.4 \\ & 655.9 \\ & 617.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 976.6 \\ & 927.8 \\ & 878.9 \\ & 83.9 \\ & 781.3 \end{aligned}$	$\begin{aligned} & 1562 . \\ & 148 . \\ & 140 . \\ & 1432 . \\ & 1250 . \end{aligned}$	$\begin{aligned} & 3121 . \\ & 2965 . \\ & 22_{2} 89 . \\ & 2653 . \\ & 265 . \\ & 2497 . \\ & \hline \end{aligned}$	6299.59845669.5354.5039.	$\begin{array}{r} 10000 . \\ 9500 \\ 9000 \\ 95500 \\ 8000 \\ 8000 . \end{array}$	$\begin{aligned} & 92.5 \\ & 87.9 \\ & 88.8 \\ & 76 . \end{aligned}$
	$\begin{aligned} & 45.8 \\ & 42.7 \\ & 39.7 \\ & 366 \\ & 33.6 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 67.3 \\ & 62.5 \\ & 57.7 \\ & 52.9 \end{aligned}$	$\begin{aligned} & 90.6 \\ & 84.6 \\ & 78.5 \\ & 77.5 \\ & 6.5 .4 \end{aligned}$	$\begin{array}{r} 114.3 \\ 106.7 \\ 99.1 \\ 91.4 \\ 83.8 \end{array}$	$\begin{aligned} & 144.7 \\ & 135 . \\ & 125.4 \\ & 11.7 \\ & 106.1 \end{aligned}$	$\begin{aligned} & 183.1 \\ & 170.9 \\ & 158.7 \\ & 146.5 \\ & 134.3 \\ & \hline \end{aligned}$	230.8 215.5 20.1 184.7 169.3	$\begin{aligned} & 288.4 \\ & 286.4 \\ & 249.9 \\ & 243.9 \\ & 211.5 \end{aligned}$	$\begin{aligned} & 370.4 \\ & 34.7 \\ & 321.7 \\ & 296.3 \\ & 271.6 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 468.8 \\ 437.5 \\ 406.3 \\ 375 \\ 375 \\ 343.8 \end{array}, ~ \end{aligned}$	$\begin{aligned} & 578.7 \\ & 540.1 \\ & 501 . \\ & 463.6 \\ & 424.4 \end{aligned}$	732.4 683.6 634.8 585.9 537.1	$\begin{aligned} & 1172 . \\ & 1094 . \\ & 1015 . \\ & 937.4 \\ & 859.3 \end{aligned}$	2341.2185.2029.1873.1717.1	$\begin{aligned} & 4724 . \\ & 4 \\ & 409 . \\ & 4094 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 7500 \\ & 7000 \\ & 7500 \\ & 65000 \\ & 6000 \\ & 5500 \end{aligned}$	69.4 64.8 60.1 55.5 50.9
500000450000400000350000300000	$\begin{aligned} & 30.5 \\ & 37.5 \\ & 24.4 \\ & 21.4 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 48.1 \\ & 43.2 \\ & 38.4 \\ & 33.6 \\ & 28.8 \end{aligned}$	$\begin{aligned} & \hline 60.4 \\ & 54.4 \\ & 48.3 \\ & 4.3 \\ & 36.2 \end{aligned}$	$\begin{aligned} & 76.2 \\ & 66.6 \\ & 61.6 \\ & 63.3 \\ & \text { 45.7 } \end{aligned}$	$\begin{aligned} & 96.5 \\ & \hline 6.8 \\ & 77.2 \\ & 67.5 \\ & 57.9 \end{aligned}$	$\begin{array}{r} 122.1 \\ 109.8 \\ 97.6 \\ 8.4 \\ 73.4 \end{array}$	$\begin{array}{r} 153.9 \\ 138.5 \\ 123.1 \\ 107.7 \\ 92.3 \end{array}$	$\begin{array}{\|l\|l\|} 192.3 \\ 173.3 \\ 153.8 \\ 134.6 \\ 115.4 \end{array}$	246.922.21972172.8148.2	$\begin{aligned} & 312.5 \\ & 281.3 \\ & 250.5 \\ & 218.8 \\ & 187.5 \end{aligned}$	$\begin{aligned} & 385.8 \\ & 347.2 \\ & 308.6 \\ & 270.1 \\ & 271.5 \end{aligned}$	$\begin{aligned} & 488.3 \\ & 439.5 \\ & 390.6 \\ & 341.8 \\ & 293.8 \end{aligned}$	$\begin{aligned} & 781.1 \\ & 70.9 \\ & 624.9 \\ & 544.8 \\ & 468.7 \end{aligned}$	$\begin{array}{\|c} 1561 . \\ 140 . \\ 124 . \\ 109 . \\ 1092.3 \\ 936.3 \end{array}$	$\begin{aligned} & 3149 . \\ & 2883 . \\ & 2850 . \\ & 2520 . \\ & 2205 . \\ & 1890 \end{aligned}$	5000.4500.4000.35000.3000.	$\begin{aligned} & 46.3 \\ & 41.6 \\ & 37 . \\ & 32.4 \\ & 32.4 \end{aligned}$
25000	15.3 24.		30.2	38.1	48.2	61.	77.	96.1	123.5	156.3	192.9	244.2	390.6	780.3	1575.	2500.	23.1

NUMBERS OF WIRES IN STRANDS.-(Continued.)

IRON WIRE.

IN COMPARING tables of the weights of Galvanized Iron Wire it was found that the weights of the various sizes were not consistent with each other in the same table, and that no two tables seemed to agree in regard to the specific gravity of the material.

This table is calculated from the formula, weight per mile $=\mathrm{D}^{2} \times .0139$, which seems to be the most likely value for galvanized iron wire. This corresponds with a specific gravity of 7.73 , and a weight per cubic foot of 483 pounds.

Steel wire is slightly heavier, and it is probable the constant in the above formula should be .014 for galvanized steel wire.

The following average values of the mile-ohm were used in calculating the resistance per mile at $68^{\circ} \mathrm{F}$., the International ohm being the unit:

Kind of material.	Minimum.	Maximum.	Average.
E. B. B.,	4500	4800	4700
B. B.,	5300	6000	5500
Steel,	6000	7000	6500

The breaking weight of any wire equals its weight per mile multiplied by 3 for E. B. B., 3.3 for B. B., or 3.7 for steel, all annealed and galvanized. This corresponds to 53100 pounds, 58410 pounds, and 65490 pounds per square inch, respectively.

The strength of steel wire varies from 50000 pounds per square inch to over 300000 pounds, according to the kind of material and its treatment.

By taking 100000 pounds per square inch as the breaking strain of steel wire, the breaking strain of any other wire may easily be computed from the table. For a wire of 80000 pounds per square inch breaking strain, take eight-tenths of the tabulated breaking strain for that size wire at 100000 pounds per square inch given in the table.

GALVANIZED IRON WIRE.

		Weights. Pounds.		Breaking weights. Pounds.		Resistance per mile in ohms.		
		$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	One mile.	Iron.	Steel.	E. B. B.	B. B.	Steel.
0	340	304	1607	4821	9079	2.93	3.42	4.05
1	300	237	1251	3753	7068	3.76	4.4	5.2
2	284	212	1121	3363	6335	4.19	4.91	5.8
3	259	177	932	2796	5268	5.04	5.9	6.97
4	238	149	787	2361	4449	5.97	6.99	8.26
5	220	127	673	2019	3801	6.99	8.18	9.66
6	203	109	573	1719	3237	- 8.21	9.6	11.35
7	180	85	450	1350	2545	10.44	12.21	14.43
8	165	72	378	1134	2138	12.42	14.53	17.18
9	148	58	305	915	1720	15.44	18.06	21.35
10	134	47	250	750	1410	18.83	22.04	26.04
11	120	38	200	600	1131	23.48	27.48	32.47
12	109	31	165	495	933	28.46	33.3	39.36
13	95	24	125	375	709	37.47	43.85	51.82
14	83	18	96	288	541	49.08	57.44	67.88
15	72	13.7	72	216	407	65.23	76.33	90.21
16	65	11.1	59	177	332	80.03	93.66	110.7
17	58	8.9	47	141	264	100.5	120.4	$139 .$
18	49	6.3	33	99	189	140.8	164.8	194.8

GALVANIZED IRON TELEGRAPH WIRE.

Western Union Telegraph company's specifications. (Condensed).
" 1 . The wire to be soft and pliable, and capable of elongating 15 per cent. without breaking, after being galvanized.
" 2. Great tensile strength is not required, but the wire must not break under a less strain than two and onehalf times its weight in pounds per mile.
" 3 . Tests for ductility will be made as follows: The piece of wire will be gripped by two vises, 6 inches apart, and twisted. The full number of twists must be distinctly visible between the vises on the 6 -inch piece. The number of twists in a piece of 6 inches in length not to be under 15 .
" 4 . The weight per mile for the different gauge wires to be: for No. 4, 730 Ibs. ; No. 6, 540 Ibs.; No. 8, 380 Ibs.; No. $9,320 \mathrm{Hbs}$. No. ${ }^{10}, 250 \mathrm{Ibs}$., or, as near these figures as practicable.
" 5 . The electrical resistance of the wire in ohms per mile, at a temperature of 68° Fahrenheit, must not exceed the quotient arising from the dividing the constant number 4800 by the weight of the wire in pounds per mile. The coëfficient .003 will be allowed for each degree Fahrenheit in reducing to standard temperature.
" 6 . The wire must be well galvanized, and capable of standing the following tests: The wire will be plunged into a saturated solution of sulphate of copper, and permitted to remain one minute, and then wiped clean. This process will be performed four times. If the wire appears black after the fourth immersion, it shows that the zinc has not been all removed, and that the galvanizing is well done ; but if it has a copper color, the iron is exposed, showing that the zinc is too thin."

GALVANIZED SUPPORTING STRANDS.

What weight per foot will a half-inch ordinary strand support if the strain is one-half the breaking weight, the span 120 feet, and the deflection .01 of the span or 1.2 feet?

One-half the breaking weight of a half-inch ordinary galvanized strand is 4160 pounds. The value of S for above span and deflection, table page 50 , is 1500.2 . Dividing 4160 by 1500.2 we find the total weight per foot to be 2.773 pounds. Deducting from this the weight per foot of the half-inch galvanized strand we have 2.263 pounds as the weight per foot of cable that this strand will support. While it is true that a factor of safety of two in this work is too small, yet the cables help in a great measure to carry their own weight. It is believed that galvanized strands will easily carry the loads indicated on page 39.

This strand is composed of seven wires, twisted together into a single strand.

Diameters in 32ds of an inch.	Weights per 100 feet. Pounds.	Estimated breaking strength. Pounds.	
		Ordinary.	Special.
16	51	8320	16640
15	48	7500	15000
14	37	6000	12000
12	30	4700	9400
10	21	3300	6600
9	18	2600	5200
8	111/2	1750	3500
7	$83 / 4$	1300	2600
6	61/2	1000	2000
5	41/2	700	1400
4	21/4	375	750
3	2	320	640

JOHN			A. ROEBLING'S			SONS	CO.		39
SUPPORTING CAPACITY OF GALVANIZED STRANDS. Ordinary.									
	Spans in feet.								
	100	110	120	125	130	140	150	175	200
	Weights of 1000 feet of cable. Pounds.								
16	2818	2516	2263	2152	2050	1867	1709	1391	1154
15.	2520	2247	2020	1920	1827	1663	1520	1234	1130
14	2030	1812	1630	1550	1476	1344	1230	1001	900
12	1580	1409	1266	1204	1146	1043	953	774	640
10	1110	899	890	846	805	733	670	544	450
9	860	765	680	652	620	563	513	414	340
8	585 433	521 385	468 846	445 329	423	385	$\stackrel{352}{ }$	285	235
6	${ }_{337}$	381 300	$\stackrel{340}{270}$	$\stackrel{325}{ } 25$	245	223	204	165	172
Spectal.									
	Spans in feet.								
	100	110	120	125	130	140	150	175	200
	Weights of 1000 feet of cable. Pounds.								
16	6146	5482	5036	4814	4510	4244	3928	3292	2818
15	5520	4974	4520	4320	4134	3808	3520	2948	2520
12	4430 3460	3994 3118	3630 2832	3470 2708	3322 2592 2	3058	2830	2372	2030
10	2430	2008	1990	1	1820	1676	1550	1298	1580 1110
9876					1420	1306	1206	1008	860
	1285	1157	1051	1005	- 961	-885	819	685	585
	953 737	857 663	778 603	745	712	655	607	507	473
	737	663		577	553	509	472	393	337
Dip $=.01$ of span. Factor of safety of two.									

CURRENTS.

FUSING EFFECTS OF CURRENTS.

Table giving the diameters of wires of various materials which will be fused by a current of given strength.
W. H. Preece, F.R.S.

$$
\mathrm{d}=\left(\frac{\mathrm{C}}{\mathrm{a}}\right)^{\frac{2}{3}}
$$

	Diameters in inches.								
	$\begin{aligned} & \text { सं } \\ & \text { सें } \\ & 0.0 \\ & 0.0 \\ & 0 \text { On } \end{aligned}$					(
	0.0021	0.0026	0.0033	0.0033	0.0035	0.0047	0.0072	0.0083	0.00
2	0.0034	0.0041	0.0053	0.0053	0.0056	0.0074	0.0113	0.0132	0.012
3	0.0044	0.0054	0.007	0.0069	0.0074	0.0097	-0.014 9	0.0173	0.016
4	0.0053	0.0065	0.0084	0.0084	0.0089	0.0117	0.0181	0.021	0.020
5	0.0062	0.0076	0.0098	0.0097	0.0104	0.0136	0.021	0.0243	0.023
10	0.0098	0.012	0.0155	0.015	0.0164	0.0216	0.0334	. 0386	
15	0.0129	0.0158	0.0203	0.0202	0.0215	0.0283	0.0437	0.0506	0.1
20	0.0156	0.0191	0.0246	0.0245	0.0261	0.0343	0.0529	0.0613	0.059
25	0.0181	0.0222	0.0286	0.0284	0.0303	0.0398	0.0614	0.0711	0.069
30	0.0205	0.025	0.0323	0.032	0.0342	0.045	0.0694	0.0803	0.0779
35	0.0227	0.0277	0.0358	0.035	0.0379	0.049	0.0769	0.089	
40	0.0248	6. 0303	0.0391	0.0388	0.0414	0.0545	0.084	0.0973	0.094
45	0.0268	0.0328	0.0423	0.042	0.0448	0.0589	0.0909	0.1052	0.1021
50	0.0288	0.0352	0.0454	0.045	0.048	0.0632	0.0975	0.1129	0.1095
60	0.0325	0.0397	0.0513	0.0509	0.0542	0.0714	0.1101	0.1275	0.1237
70	0.036	0.044	0.0568	00564	0.0601	0.0791	0.122	0.1413	0.1371
80	0.0394	0.0481	0.0621	0.0616	0.0657	0.0864	0.1334	0.1544	0.1499
90	0.0426	0.052	0.6872	0.0667	0.0711	0.0935	0.1443	0.1671	0.1621
100	0.0457	0.0558	0.072	0.0715	0.0762	0.1003	0.1548	0.1792	0.1739
120	0.0516	0.063	0.0814	0.0808	0.0861	0.1133	0.1748	0.2024	0.1964
140	0.0572	0.0698	0.0902	0.0895	0.0954	0.1255	0.1937	0.2243	0.2176
160	0.0625	0.0763	0.0986	0.0978	0.1043	0.1372	0.2118	0.2452	0.2379
180	0.0676	0.0826	0.1066	0.1058	0.1128	0.1484	0.2291	0.2652	0.2573
200	0.0725	0.0856	0.1144	0.1135	0.121	0.1592	0.2457	0.2845	0.276
225	0.0784	0.0958	0.1237	0.1228	0.1309	0.1722	02658	0.3077	0.2986
250	0.0841	0.1028	0.1327	0.1317	0.1404	0.1848	0.2851	03301	0.3203
275	0.0897	0.1095	0.1414	0.1404	0.1497	0.1969	0.3038	0.3518	0.3417
300	0.095	0.1161	0.1498	0.1487	0.1586	0.2086	0.322	0.3728	0.3617

FUSING EFFECTS OF CURRENTS.-(Continued.)
Table showing the amperes required to fuse wires of various sizes and materials.

²0	Diameter, d.	$\mathrm{d}^{\frac{3}{2}}$.	$\begin{aligned} & \text { Copper. } \\ & \mathrm{a}=10244 . \end{aligned}$	$\underset{a=7585 .}{\text { Aluminum, }}$	$\begin{aligned} & \text { Platinum, } \\ & \mathbf{a}=5172 . \end{aligned}$	German silver, $a=5230$	Platinoid, $a=4750$.	$\begin{gathered} \text { Iron, } \\ \mathrm{a}=3148 . \end{gathered}$	$\underset{a=1642 .}{\operatorname{Tin},}$	Tin-lead alloy, $a=1318$.	$\begin{gathered} \text { Lead, } \\ \mathrm{a}=1379 . \end{gathered}$
14	0.08	0.022627	231.8	171.6	117.	118.3	107.5	71.22	37.15	29.82	31.2
16	0.064	0.016191	165.8	122.8	83.73	84.68	76.9	50.96	26.58	21.34	22.32
18	0.048	0.010516	107.7	79.75	54.37	54.99	49.95	33.1	17.27	13.86	14.5
20	0.036	0.006831	69.97	51.18	35.33	3572	32.44	21.5	11.22	9.002	9.419
22	0.028	0.004685	48.	35.53	24.23	24.5	22.25	14.75	7.692	6.175	6.461
24	0.022	0.003263	33.43	24.75	16.88	17.06	15.5	10.27	5.357	4.3	4.499
26	0.018	0.002415	24.74	18.32	12.49	12.63	11.47	7.602	3.965	3.183	3.33
28	0.0148	0.001801	18.44	13.66	9.311	9.416	8.552	5.667	2.956	2.373	2.483
30	0.0124	0.001381	14.15	10.47	7.142	7.222	6.559	4.347	2.267	1.82	1.904
32	0.0108	0.001122	11.5	8.512	5.805	5.87	5.33	3.533	1.843	1.479	1.548

Note.-The size of "cut-outs," or fuses for electric-lighting circuits, can be taken at once from the first table. Pure copper wire makes the best and most reliable cut-out or fuse, and should never be less than one inch in length between the terminals to which it is fixed so as to prevent the cooling effect of the terminals.

HEATING EFFECTS OF CURRENTS.

AREPORT read before the Edison Convention, at Niagara Falls, August, 1889, by A. E. Kennelly, gives complete formulæ and tables based on experimental data, showing the heating effects of electric currents. This report was published in the Electrical World, beginning with the edition of November 23, 1889.

The tables in this book are taken from curves constructed from data given in the above report.

The table page 43 gives the rules of the varions insurance companies, together with one column giving the current whose double would cause a rise of $40^{\circ} \mathrm{C}$. This is the safe carrying capacity recommended in Kennelly's report.

The table page 44 gives the diameters of various wires and the current they will carry with a specified rise in temperature. The wires are insulated, and the conditions are similar to those met with in house wiring in mouldings or conduits.

The table page 45 is computed for bare wires suspended indoors, and gives the current carried with the corresponding rise in temperature.

The table page 46 is computed for outdoor wires, not insulated.

In these tables all wires are solid.
Insulation increases the current a wire will carry with a given rise in temperature, because the radiating surface is increased, and for the same reason a strand will carry a larger current than a solid wire.

One square inch of bright copper radiates .0039 watts per degree Centigrade rise in temperature, and one square inch of blackened copper, .009 watts, under the same conditions. Convection seems to be dependent only on length, and may be taken at .053 watts per foot per degree Centigrade rise.

HEATING EFFECTS OF CURRENTS.

Insurance rules for carrying capacity of wires.

			Nation of Fir wr Concealed work.	Board Underrs. \qquad Open work.	$\begin{aligned} & \text { Associated Factory } \\ & \text { Mutual Insurance } \\ & \text { company. } \end{aligned}$	
0000	174	175	218	312	175
000	146	145	181	262	145
00	123	120	150	220	120	105
0	103	100	125	185	100	83
1	88	95	105	156	85	66
2	73	70	88	131	70	52
3	61	60	75	110	60	41
4	52	50	63	92	50	33
5	43	45	53	77	45	26
6	36	35	45	65	35	21
7	31	30	30	16
8	26	25	33	46	25	13
10	18	20	25	32	20	8
12	18	15	17	23	15	5
14	9	10	12	16	10	3
16	6	5	6	8	5	2
18	5	3	5	3	1

HEATING EPFECTS OF CURRENTS.-(Cont.)

Carrying capacity of insulated wires in mouldings.
(Kennelly's formula.)

	Rise in temperature in degrees Centigrade.								
	5°	10°	15°	20°	30°	40°	50°	60°	70°
	Diameters of wires in mils.								
300	\ldots	\ldots	\ldots	\ldots	446	411	386	367	354
280	\ldots			427	393	369	350	338
260	\ldots	450	409	375	352	333	321
240		430	390	356	333	315	304
220	436	408	370	337	315	298	285
200	\ldots	448	414	386	350	317	295	280	268
190	437	403	375	339	308	286	270	258
180	425	391	364	328	298	277	260	249
170	411	378	352	317	287	266	250	239
160	398	364	340	305	276	256	241	229
150	445	383	351	326	293	265	244	230	218
140	431	370	338	312	281	253	232	220	206
130	417	354	322	300	269	240	220	208	195
120	400	339	308	285	255	228	208	195	182
110	383	322	292	270	240	214	195	182	170
100	362	302	276	253	223	200	182	168	158
90	343	284	259	237	208	185	168	154	143
80	322	264	240	218	192	169	153	139	130
70	300	242	220	198	174	152	139	123	116
60	275	220	195	175	155	135	122	108	101
50	250	195	175	152	132	118	104	91	86
40	217	169	144	128	110	95	85	75	70
30	178	136	115	100	85	73	66	58	54
20	132	100	71	69	59	50	45	40	37
10	78	58	42	35	30	\cdots

JOHN A．ROEBLING＇S SONS CO．

HEATING EFFECTS OF CURRENTS．－（Cont．）

Bare copper in still air．
Rise in temperature，degrees Centigrade．

10°		20°		40°		80°	
$\begin{aligned} & \text { ざ } \\ & \text { 品 } \\ & \text { M } \end{aligned}$		咢	苍	呂	－	淢	烒

Diameters of wires in mils．

HEATING EFFECTS OF CURRENTS．－（Cont．）

Bare copper suspended outdoors．

	Rise in temperature，degrees Centigrade．							
	5°		10°		20°		40°	
	$\begin{aligned} & \text { 蔦 } \\ & \text { 感 } \end{aligned}$	$\begin{aligned} & \text { ジせ } \\ & \text { 花 } \end{aligned}$		葛	号	萨	器	遍
	Diameters of wires in mils．							
1000	．	．．．．．	962	932	771	745	620	594
950	．．．．．	\cdots	9：8	897	744	720	595	572
900	．．．．．	．．．．．	894	865	715	692	574	552
850	．．．．．	．．．．．	868	843	689	665	550	530
800	．．．．．	．．．．．	839	810	672	649	537	512
750		975	804	775	643	6：0	515	495
700	963	933	767	739	613	591	491	472
650	916	889	729	703	582	561	467	449
600	869	837	690	665	554	532	44^{2}	426
575	845	813	671	647	538	517	429	414
550	820	789	650	627	522	501	417	402
525	795	764	630	609	506	487	404	389
500	770	740	610	589	489	470	390	376
475	745.	719	589	569	473	455	377	363
450	719	693	568	548	453	438	363	350
425	690	667	546	526	436	422	349	336
400	661	638	524	504	418	406	334	322
375	632	610	502	484	399	377	319	309
350	601	581	478	462	380	360	304	295
325	571	552	453	439	362	342	289	279
300	540	522	428	415	342	326	273	264
275	509	492	404	392	321	309	257	249
250	477	460	378	367	300	240	240	222
225	445	430	351	343	280	270	223	215
200	410	399	324	316	259	250	205	198
175	373	365	296	289	235	227	186	180
150	334	329	267	258	211	202	166	161
125	295	290	235	226	185	177	145	144
100	254	248	202	193	157	152	123	120
90	236	230	186	178	145	140	114	111
80	216	212	171	164	182	128	104	102
70	198	192	155	150	120	116	94	91
60	177	170°	137	132	107	104	83	80
50	155	147	119	115	92	87	72	70
40	130	124	100	96	77	73	62	59
30	104	100	78	75	61	58	50	45
20	73 40	70	54	53	43	40	34	30
10	40	38	27	26	20	18	16	14

SPANS.

THE formulæ used in calculating these tables of lengths and strains in spans of wire are those of a catenary of small deflection. They are given in Weisbach's Mechanics of Engineering, page 297. (seventh American edition, translated by Eckley B. Coxe, A. M.)

In these tables the horizontal strain at the center of the span is given. The strain at any other point equals the strain at the center plus the weight of a length of the wire equal to the perpendicular distance of that point from the lowest point of the wire in the span. For ordinary spans this is negligible. For any given wire the longest possible span is one where the deflection is about one-third of the span.
The effects of temperature on the strains of wires in spans is at first sight so great as to render the other considerations of little importance. The table, page 53, is calculated on the assumption that the supports of the spans are perfectly rigid under all conditions of strain and that the wire is inelastic. This is never true in practice. The changes in direction in a pole line afford a chance for the strains, due to a shortening of the wire by a fall in temperature, to be taken up by a bending of the supports.

If the elastic limit of hard-drawn copper wire of 60000 pounds breaking strain be taken at 20000 pounds, then S will equal 20000 divided by 3.85 , the weight of a piece of copper one foot long and one square inch in section. This makes S equal 5195 . Looking at the table of values of S, page 50, this value for a span of 130 feet comes between a deflection of .003 and .004 . In the same way the allowable deflection fur any other span of hard-drawn copper could be found or for any other material by substituting the proper terms for the elastic limit and the weight per foot given above.

The following gives the practice of some of the telegraph and telephone companies in their line construction:

SPECIFICATIONS FOR STANDARD CONSTRUCTION OF HARD-DRAWN COPPER.

	Spans in feet.					
	75	100	${ }^{\circ} 115$	130	150	200
	Sag in inches.					
-30	1	2	21/2	38	41/2	8
-10	$11 / 2$	$21 / 3$	3	$3^{3 / 7}$	5	${ }^{9}$
10	$11 / 3$	$25 / 8$	$31 / 2$	43	$53 /$	101/4
60 80	21/2	$41 / 1$ 59	$51 / 2$	7 85	${ }_{111 / 4}$	153 18
100		$7^{3 / 8}$		$11^{8 / 8}$		1821/4

For spans between 400 and 600 feet, the dip shall be 1-40th of the span.

For spans between 600 and 1000 feet, the dip shall be 1-30th of the span.

Another company uses 40 poles to the mile, and in the East allows three-inch dip at center of spans. In the West, where the variation of temperature is greater, 10 inches dip is allowed in summer, and 8 inches in the winter. This construction applies to both copper and iron wire, and has been found by actual experience to give satisfactory results.

The following formulæ were used in calculating the tables:
(1) $\mathrm{S} \times \mathrm{W}=$ horizontal strain on wire at center of span
(2)

$$
\begin{align*}
& S=\frac{y^{2}}{2 x}+\frac{x}{6} \\
& 1=y\left[1+\frac{3}{3}\left(\frac{x}{y}\right)^{2}\right] \tag{3}\\
& x=3 S-\sqrt{9 S^{2}-3 y^{3}}
\end{align*}
$$

(4)
(5)

$$
x=\sqrt{\frac{3 y l-3 y^{3}}{2}}
$$

249

JOHN A. ROEBLING'S SONS CO.

In these formula
$\mathrm{y}=$ one-half span.
$1=$ one-half length of wire in span.
$\mathrm{x}=$ deflection at center in same units as y.
$\mathrm{w}=$ weight per foot of wire.

Suppose we have a span of 200 feet of hard-drawn copper wire weighing one pound to 10 feet, and a deflection of two feet or .01 of the span.

$$
\begin{align*}
S & =\left(\frac{100}{2}\right)^{2}+\frac{2}{6} \tag{2}\\
& =2500.33+
\end{align*}
$$

$$
\begin{align*}
1 & =100\left[1+\frac{3}{3}\left(\frac{2}{100}\right)^{2}\right] \tag{3}\\
& =100.0266+ \\
21 & =200.053+
\end{align*}
$$

$$
\begin{align*}
\mathrm{x} & =7501-\sqrt{56265001-30000 .} \tag{4}\\
& =2
\end{align*}
$$

$$
\begin{align*}
\mathbf{x} & =\sqrt{\frac{30008-30000}{2 .}} \tag{5}\\
& =2 .
\end{align*}
$$

In calculating the table, page 53, the deflection of the line was determined at $-10^{\circ} \mathrm{F}$. by formula 4 , the value of S being 30000 divided by 3.85 or 7792 . For the other temperatures the length of the wire was calculated from the following formula:

$$
\text { Length }=1(1+.0000093 t)
$$

Here t is the difference in temperature in degrees Fahrenheit.

By formula 5 the deflection corresponding to the new length was found.

The coëfficients of linear expansion for each degree Fahrenheit are as follows:

> | Copper, .0000093. |
| :--- |
| Iron, |
| Lead, .0000068. |
| 000016. |

STRAINS AT CENTERS OF SPANS RESULTING FROM A GIVEN DEFLECTION.-(Cont.)

	Deflectlons in decimal parts of spans.											
	. 020	. 025	030	. 035	. 040	. 045	. 050	. 055	. 060	. 065	. 070	. 075
	Multipliers.											
10	62.533	50.041	41.716	35.772	31.316	27.852	25.083	22.818	20.933	19.339	17.973	
20	125.066	100.083	83.433	71.545	62.633	55.705	50.166	45.637	41.866	38.678	35.947	${ }_{33.583}$
30	187.6	150.125	125.15	107.317	93.950	83.558	75.25	68.456	62.8	58017	53.921	50.375
40	250.133	200.166	166.866	143.09	125.266	111.411	100.333	91.275	83.733	77.356	71.895	67.166
50	312.666	250.208	208.583	178.863	156.583	139.263	125.416	114.094	104.666	96.695	89.869	83.958
60	375.2	300.25	250.3	214.635	187.900	167.116	150.5	136.913	125.6	116.034	107.042	100.75
70	437.733	350.291	292.016	250.408	219.216	194.969	175.583	159.732	146.533	135.373	125.816	117.541
80	500.266	400.333	333.733	286.18	250.533	222.822	200.666	182.551	167.466	154.712	143.79	134.333
90	562.8	450.375	375.45	321.953	281.850	250.674	225.75	205.37	188.4	174.051	161.764	151.125
100	625333	500.416	417.166	357.726	313.166	278.527	250.833	228.189	209.333	193.391	179.738	167.916
110	687.866	550.458	458.883	393.498	344.483	306.38	275.916	251.008	230.266	212.73	197.711	
120	750.4	600.5	500.6	429.271	375.800	334.233	301.	273.827	251.2	232.069	215.685	201.5
130	812.933	650.541	542.316	465.044	407.116	362.086	326.083	296.646	272.133	251.408	233.659	218.291
140	875.466	700.583	584.033	500.816	438.433	389.938	351.166	319.465	293.066	270.747	251.633	235.083
150	938.	750.625	625.75	536.589	469.750	417.791	376.25	342.284	314.	290.086	269.607	251.875
160	1000.533	800.666	667.466	572.361	501.066		401.333	365.103	334.933	309.425	287.58	268.666
170	1063.066	850.708	709.183	608.134	532.383	473.497	426.416	387.921	355.866	328.764	305.554	285.458
180	1125.6	900.75	750.9	643.907	563.7	501.349	451.5	410.74	376.8	348.103	323.528	302.25
190	1188.133	950.791	792.616	679.679	595.016	529.202	476.583	433.559	397.733	367.442	341.502	319.041
200	1250.666	1000.833	834.333	715.452	626.333	557.055	501.666	456.378	418.666	386.782	${ }_{359.476}$	${ }_{335.833}$

STRAINS AT CENTERS OF SPANS RESULTING FROM A GIVEN DEFLECTION.-(Cont.)

	Deflections in decimal parts of spans.														
	. 080	. 085	. 090	. 095	. 100	. 110	. 120	. 130	. 140	. 150	. 160	. 170	. 180	. 190	. 200
	Multipliers.														
10	15.758	14.847	14.038	13.316	12.666	11.546	10.616	9.832	9.161	8.583	8.079	7.636	7.244	6.895	6.583
20	31.516	29.695	28.077	26.632	25.333	23.093	21.233	19.664	18.323	17.166	16.158	15.272	14.488	13.791	13.166
30	47.275	44.542	42.116	39.948	38.	34.64	31.85	29.496	27.485	25.75	24.237	22.908	21.733	20.686	19.75
40	63.033	59.39	56.155	53.264	50.666	46.187	42.466	39.328	36.647	34.333	32.316	30.545	28.977	27.582	26.333
50	78.791	74.237	70.194	66.581	63.333	57.734	53.083	49.16	45.809	42.916	40.395	38.181	36.222	34.478	32.916
60	94.55	89.085	84.233	79.897	76.	69.281	63.7	58.992	54.971	51.5	48.475	45.817	43.466	41.373	39.5
70	110.308	103.932	98.272	93.213	88.666	80.828	74.316	68.824	64.133	60.083	56.554	53.453	50.711	48.269	46.083
80	126.066	118.78	112.311	106.529	101.333	92.375	84.933	78.656	73.295	68.666	64.633	61.09	57.955	55.164	52.666
90	141.825	133.627	126.35	119.846	114.	103.922	95.55	88.488	82.457	77.25	72.712	68.726	65.199	62.06	59.25
100	157.583	148.475	140.388	133.162	126.666	115.469	106.166	98.32	91.619	85.833	80.791	76.362	72.444	68.956	65.833
110	173.341	163.323	154.427	146.478	139.333	127.016	116.783	108.152	100.78	94.416	88.87	83.999	79.688	75.851	72.416
120	189.1	178.17	168.466	159.794	152.	138.563	127.4	117.984	109.942	103.	96.95	91.635	86.933	82.747	79.
130	204.858	193.018	182.505	173.11	164.666	150.11	138.016	127.816	119.104	111.583	105.029	99.271	94.177	89.642	85.583
140	220.616	207.865	196.544	186.427	177.333	161.657	148.633	137.648	128.266	120.166	113.108	106.907	101.422	96.538	92.166
150	236.375	222.713	210.583	199.743	190.	173.204	159.25	147.48	137.428	128.75	121.187	114.544	108.666	103.434	98.75
160	252.133	237.56	224.622	213.059	202.666	184.751	169.866	157.312	146.59	137.333	129.266	122.18	115.911	110.329	105.333
170	267.891	252.408	238.661	226.375	215.333	196.298	180.483	167.144	155.752	145.916	137.345	129.816	123.155	117.225	111.916
180	283.65	267.255	252.7	$239.69{ }^{2}$	228.	207.845	191.1	176.976	164.914	154.5	145.425	137.452	130.399	124.121	118.5
190	299.408	282.103	266.738	253.008	240.666	219.392	201.716	186.808	174.076	163.083	153.504	145.089	137.644	131.016	125.083
200	315.166	296.95	280.777	266.324	253.333	230.939	212.333	196.641	183.238	171.666	161.583	152.725	144.884	137.912	131.666

[^3]
TEMPERATURE EFFECTS IN SPANS.

Spans in feet.	Temperature in degrees Fahrenheit.								
	-10°	30°	40°	50°	60°	70°	80°	90°	100°
	Deflections in inches.								
50	. 5	6	8	9	9	10	11	11	12
60	. 7	8	10	11	11	12	13	13	14
70	1.	10	11	12	13	14	15	15	17
80	1.2	11	13	14	15	16	17	18	19
90	1.6	13	14	16	17	18	19	20	21
100	1.9	14	16	17	19	20	21	23	24
110	2.3	16	18	19	21	22	24	25	26
120	2.8	17	19	21	22	24	26	27	28
130	3.2	19	21	23	25	26	28	29	31
140	3.7	20	23	25	27	28	30	32	33
110	4.3	22	24	26	28	30	32	34	36
160	4.9	23	26	28	30	32	34	36	38
170	5.5	25	28	30	32	35	37	38	40
180	6.2	26	29	32	34	37	39	41	43
190	7.	28	31	34	36	39	41	43	45
200	7.7	31	33	36	38	41	43	45	48

Hard-drawn copper wire, 60000 pounds strength per square inch.

Strain at $-10^{\circ} \mathrm{F}$., 30000 pounds per square inch.
TOTAL LENGTHS OF WIRES IN SPANS.-(Continued.)

	Deflections in decimal parts of spans.											
	. 090	. 100	. 110	. 120	. 130	. 140	. 150	. 160	. 170	. 180	. 190	. 200
	Lengths of wires.											
10	10.216	10.266	10.322	10.384	10.45	10.522	10.6	10.682	10.77	10.864	10.962	11.066
20	20.432	20.533	20.645	20.768	20.901	21.045	21.2	21.365	21.541	21.728	21.925	22.133
30	30.648	30.8	30.968	81.152	31.352	31.568	31.8	32.048	32.312	32.592	32.888	33.2
40	40.864	41.066	41.29	41.536	41.802	42.09	42.4	42.73	43.082	43.456	43.85	44.266
50	51.08	51.333	51.613	51.92	52.253	52.613	53.	53.413	53.853	54.32	54.813	55.333
60	61.296	61.6	61.936	62.304	62.704	63.136	63.6	64.096	64624	65.184	65.776	66.4
70	71.512	71.866	72.258	72.688	73.154	73.658	74.2	74.778	75.394	76.048	76.738	77.466
80	81.728	82.133	82.581	83.072	83.605	84.181	84.8	85.461	86.165	86.912	87.701	88.533
90	91.944	92.4	92.904	93.456	94.056	94.704	95.4	96.144	96.936	97.776	98.664	99.6
100	102.16	102.666	103.226	103.84	104.506	105.226	106.	106.826	107.706	108.64	109626	110.666
110	112.376	112.933	113.549	114.224	114.957	115.749	116.6	117.509	118.477	119.504	120.589	121.733
120	122.592	123.2	123872	124.608	125.408	126.272	127.2	128.192	129.248	130.368	131.552	132.8
130	132.808	133.466	134.194	134.992	135.858	136.794	137.8	138.874	140.018	141.232	142.514	143.866
140	143.024	143.733	144.517	145.376	146.309	147.317	148.4	149.557	150.789	152.096	153.477	154.933
150	153.24	154.	154.84	155.76	156.76	157.84	159.	160.24	161.56	162.96	164.44	166.
160	163.456	164.266	165.162	166.144	167.21	168.362	169.6	170.922	172.33	173.824	175.402	177.066
170	173.672	174.533	175.485	176.528	177.661	178.885	180.2	181.605	183.101	184.688	186.365	188.133
180	183.888	184.8	185.808	186.912	188.112	189.408	190.8	192.288	193.872	195.552	197.328	199.2
190	194.104	195.066	196.13	197.296	198.562	199.93	201.4	202.97	204.642	206.416	208.29	210.166
200	204.32	205.333	206.453	207.68	209.013	210.453	212.	213.653	215.413	217.28	219.253	221.333

WEATHERPROOF WIRE.

Our Weatherproof wire is put on reels in long lengths, and has a hard, smooth finish, presenting the least posisible chance fnr adherence of ice and snow. We keep in stock all sizes given in the accompanying table, to 0000 B. \& S., in both double and triple braid.

In the Stranded wires, we keep only the most commonly used sizes. We make this Feed Wire Strand either concentric or cable-laid, as desired.

FIRE AND WEATHERPROOF WIRE.

For interior work, we manufacture a Fire and Weatherproof insulation. Full information concerning weights, diameters and prices furnished on application.

UNDERWRITERS' WIRE.

Underwriters' wire seems to be used chiefly for inside work. Its weight is about the same as double-braid Weatherproof.

WEATHERPROOF IRON WIRE.

We keep in stock 10,12 and 14 B. W. G., both double and triple braid.

Numbers, B. W. G.	Weights per mile. Pounds.		Lengths in coils. Miles.
	Double braid.	Triple braid.	
4	997	1102	
6	713	773	1/8
8	483	548	$1 / 4$
9	403	464	1/8
10	350	410	1/8
12	240	265	1/2
14	150	176	1/2

WEATHERPROOF WIRE.

	Double braid.			Triple braid.			Approximate weights. Pounds.	
		Weights. Pounds.			Weights. Pounds.			
		$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.		$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.	Reel.	Coil.
0000	20	716	3781	24	775	4092	2000	250
000	18	575	3036	22	630	3326	2000	250
00	17	465	2455	18	490	2587	500	250
0	16	375	1980	17.	400	2112	500	250
1	15	285	1505	16	306	1616	500	250
2	14	245	1294	15	268	1415	500	250
3	13	190	1003	14	210	1109	500	250
4	11	152	803	12	164	866	250	125
5	10	120	634	11	145	766	260	130
6	9	98	518	10	112	591	275	140
8	8	66	349	9	78	412	200	100
10	7	45	238	8	55	290	200	100
12	6	30	158	7	35	185	25
14	5	20	106	6	${ }^{26}$	137	25
16	- 4	14	74	5	20	106	\ldots	25
18	3	10	53	4	16	85	25

STRANDED WEATHERPROOF FEED WIRE.

Circular mils.	Outside diameters. lnches.	Weights. Pounds.		$\begin{gathered} \text { Approxi- } \\ \text { mate } \\ \text { length } \\ \text { on reels. } \\ \text { Feet. } \end{gathered}$
		1000 feet.	Mile.	
1000000	11/2	3550	18744	800
900000	$11{ }^{1}$	3215	16975	800
800000	$1{ }^{18}$	2880	15206	850
750000	15	2713	14325	850
700000	$1{ }^{18}$	2545	13438	900
650000	$11 / 4$	2378	12556	400
600000	$1{ }^{3}$	2210	11668	1000
550000	$1{ }^{1 / 8}$	2043	10787	1200
500000	$11 / 8$	1875	9900	1320
450000	$1{ }^{\frac{3}{31}}$	1703	8992	1400
400000	$1{ }^{18}$	1530	8078	1450
350000	1	1358	7170	1500
300000	$\frac{18}{18}$	1185	6257	1600
250000	${ }^{3}$ 景	1012	5343	1600

The table is calculated for concentric strands. Rope-laid strands are larger.

RUBBER WIRE.

WE MANUFACTURE rubber insulated wires for all purposes, including wires and cables for aerial, underground, and submarine use. The copper conductor is tinned, and then covered with a cement of pure rubber, which causes the succeeding coat of rubber to adhere firmly to the wire. This layer consists of white rubber without sulphur. Over this is a layer of vulcanized rubber, and the whole is covered with a finishing braid of cotton saturated with a Weatherproof compound, which protects the rubber from mechanical injury, and from the action of the air. A poor quality of rubber insulation is inferior to Weatherproof, and we would recommend our Fire and Weatherproof insulation for inside work, rather than an inferior rubber wire.

A good rubber wire should have its conductor central, the insulation should adhere firmly to the wire, it should not crack or become brittle after use, and it should show, after immersion in water for twenty-four hours, the same insulation resistance per mile as when tested after being first put in water. The absolute number of megohms per mile depends on the age of the rubber used, together with other details of manufacture, and is not always a sure guide to the quality of the insulation. Uniformity of insulation among several coils of wire made at the same time, or among the various conductors of a cable, is a much more valuable aid in detecting a poor piece of wire, as in this case an insulation lower than the average shows a local defect, which, in time, will be likely to cause trouble.

CRESCENT RUBBER WIRE

Stranded conductors.

Numbers, B. \& S. G.	$\begin{aligned} & \text { Circular } \\ & \text { mils. } \end{aligned}$	Outside diameters. Inches.	Weights per 1000 feet. Pounds.	Sizes of wires in strands. B. \& S. G.	
				Regular.	Flexible.
........	1000000	$1{ }_{18}^{78}$	3690	8	12
........	900000	113	3370	8	12
.......	800000	$1{ }^{92}$	3020	8	12
.......	700000	$1 \frac{7}{32}$	2685	10	12
....	600000	$1{ }_{37}{ }^{\frac{8}{3}}$	2345	10	12
\ldots	500000	18	1885	10	14
...	450000	$1 \frac{18}{12}$	1723	10	14
.......	400000	1	1560	10	14
........	350000	$\frac{15}{18}$	1378	10	14
........	300000	7/8	1155	10	14
	250000	${ }^{27}$	995	10	14
0000	${ }^{23}$	866	10	15
000	${ }^{2} \frac{3}{2}$	725	10	15
00	12	613	11	15

	Outside diameters in 32ds of an inch.		Weights per 1000 feet. Pounds.	Sizes of wires in strand. B. \& S. G.	
	Solid.	Stranded.		Regular.	Flexible.
0	18	20	489	12	16
1	16	18	393	12	16
2	14	15	309	12	18
3	13	14	244	13	18
4	12	13	198	14	20
5	11	12	168	15	20
6	10	11	146	16	20
8		10	106	18	22
10	8	8	77	20	25
12	7	7	55	20	25
14	6	6	35	21	25
16	5	5	25	23	25
18	4	4	20	25	25

MAGNET WIRE.

THE BARE COPPER intended for Magnet wire is specially drawn and annealed, great care being taken to have it true to gauge, and soft.

A difference from the standard, of one mil, is allowed on sizes larger than No. 10 B. \& S. G.; from No. 10 to No. 14, three-fourths of a mil variation is allowed, and any wire smaller than No. 14, one-half a mil variation is allowed.

The insulation is smooth and uniform, and is kept true to gauge to within one mil of the required diameter.

We manufacture any special kind of Magnet wire required, flats, squares and strands.

We understand that a No. 6 B. \& S. square Magnet wire measures 162×162 mils.

Flats are designated by their width and thickness. Thus a flat Magnet wire 340 mils wide and 40 mils thick would be designated as a 340×40 flat Magnet wire.
Strands can be furnished of any size, insulated with double or triple windings of cotton, or any combination of braids and windings that may be desired.

MAGNET WIRE.

Numbers, B. \& S. G.	$\begin{aligned} & \text { Diameter } \\ & \text { drawn. } \\ & \text { Mils. } \end{aligned}$	Outside diameters. Mils.		Approximate weights on reels. Pounds.
		Double.	Single.	
0	325	343	337	200
1	289	307	301	200
2	258	276	270	200
8	229	247	241	200
4	204	222	216	200
5	182	200	194	200
6	162	178	172	200
7	144	160	154	200
8	128	142	137	200
9	114	126	122	200
10	102	112	108	200
11	91	101	97	200
12	81	91	87	200
13	72	81	78	160
14	64	73	70	160
15	57	66	63	50
16	51	60	57	50
17	45	54	51	50
18	40	49	46	50
19	36	45	42	50

GERMAN SILVER WIRE.

	Resistance perfeet.			Resistance per 1000 feet.	
	18 per centum.	30 per centum.		18 per centum.	30 per centum.
6	7.20	11.21	22	295.38	459.48
7	9.12	14.18	23	370.26	575.96
8	11.54	17.95	24	468.18	728.28
9	14.55	22.63	25	590.22	918.12
10	18.18	28.28	26	748.08	1163.68
11	22.84	35.53	27	937.98	1459.08
12	28.81	44.82	28	1191.24	1853.04
13	36.48	56.75	29	1481.22	2304.12
14	46.17	71.82	30	1891.8	2942.8
15	58.21	90.55	31	2388.6	3715.6
16	72.72	113.12	32	2955.6	4597.6
17	93.40	145.29	33	3751.2	5835.2
18	118.20	183.87	34	4764.6	7411.6
19	145.94	227.02	35	6031.8	9382.8
20	184.68	287.28	36	7565.4	11768.4
21	232.92	362.32

The resistance of German silver wire varies according to the method of manufacture and the materials used.

From actual tests on wire with eighteen per centum of nickel, extending over ten years, it seems that eighteen times the resistance of copper, at $75^{\circ} \mathrm{F}$., represents very closely the resistance of this alloy. This value is rather under than over the average results of the tests.

For the thirty per centum alloy, we have to depend on the results of a single series of tests, and while the results are believed to be correct, they are not as reliable as those given for the eighteen per centum German silver wire. We take the resistance of the thirty per centum alloy at twenty-eight times the resistance of copper, at 75°.

The International ohm is taken as the unit of resistance.

OFFICE WIRES.

Office wire is usually made with a wind and a braid of cotton saturated with paraffine. It is sometimes required with a double braid or triple braid of cotton. The most common colors are red and white. Any combination of colors can be furnished.
Damp-proof Office wire has the inside wind saturated with black Weatherproof compound, while the outside finish is the same as ordinary Office wire.

Annunciator wire has a covering consisting of two wraps of cotton saturated with paraffine. The outer covering is made in solid colors or combination of two colors.

Double conductors for house wiring are of various kinds.
Two conductors twisted together, without any outside cover, form a convenient method of wiring for bells, telephones, etc. These conductors may be 18 B. \& S., with double braid Weatherproof or with Annunciator insulation.

Two-conductor Office wire may be two Office wires laid side by side and covered with a two-colored Office braid, or it may consist of two Annunciator wires so insulated.

Weatherproof cables consist of $18 \mathrm{~B} . \&$ S. G. Annunciator wires, twisted into a cable and covered with rubber tape and a braid of cotton saturated with Weatherproof insulation. They weigh about ten pounds per 1000 feet per conductor. For work inside building, in dry places, the rubber tape may be omitted, and the finishing braid made any color to correspond with the woodwork.

Lamp cord is furnished in silk or cotton insulation. Green and yellow is the standard color combination.

Numbers, B. \& S. G.	Weights per 1000 feet.		Sizes of Lamp cord.	
	Office wire.	$\begin{gathered} \text { Annunciator } \\ \text { wire. } \end{gathered}$	Silk.	Cotton.
$\begin{aligned} & 14 \\ & 16 \\ & 18 \\ & 20 \end{aligned}$	17 12 9 7	$\begin{aligned} & 15 \\ & 10 \\ & 7 \\ & 41 / 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 10 \\ & 10 \\ & 18 \\ & 18 \end{aligned}$	

POWER CABLES.

WE MANUFACTURE power and electric-light cables, with jute, paper or rubber insulation. The thickness and kind of insulation depend on the use for which the cable is intended. The table of diameters and weights is based on $\frac{3}{16}$ insulation on a side, and is approximately correct for any kind of insulation.

Specifications for Underground Cable of 500000 C. M.

1. Copper Conductor.

The conductor shall consist of 47 wires, each 104 mils in diameter, and shall weigh not less than 1.525 pounds per foot. The copper used shall have a conductivity of not less than 98 per cent.

2. Insulation.

The insulation shall consist of paper not less than ${ }^{3}$. thick, and shall form a wall of uniform thickness around the conductor.

3. Sheath.

The insulated conductor shall be enclosed in a pipe composed of lead and tin. The amount of tin shall not be less than 2.9 per cent. The pipe shall be formed around the core, and shall be free from holes or other defects, and of uniform thickness and composition.
4. Insulation Resistance.

The insulation resistance shall be not less than 300 megohms per mile, at $60^{\circ} \mathrm{F}$.

POWER CABLES.

Numbers, B. \& S. G.	Circular mils.	Outside diameters. Inches.	Weights, 1000 feet. Pounds.
\ldots	1000000	118	6685
.......	900.000	$1{ }^{23}$	6228
....	800000	$12 \frac{1}{3}$	5773
........	750000	15/8	5543
........	700000	$11{ }^{19}$	5315
........	650000	$1{ }_{18}{ }^{\frac{1}{8}}$	5088
.......	600000	$11 \frac{7}{2}$	4857
........	550000	11/2	4630
....	500000	17	4278
........	450000	18/8	3923
.......	400000	113	3619
........	350000	$1 \frac{5}{88}$	3416
........	300000	11/4	3060
*......	250000	$1{ }_{18}{ }^{3}$	2732
0000	211600	138	2533
000	168100	$1{ }_{17}^{18}$	2300
00	133225	1	2021
0	105625	$1{ }^{18}$	1772
1	83521	29	1633
2	66564	7/8	1482
3	52441	${ }^{35}$	1360
4	41616	8/4	1251
6	26244	$\frac{1}{18}$	1046

TELEPHONE CABLES.

Lead-encased for underground or aerial use.

THE INSULATION of these cables is dry paper. We manufacture several styles of 19 B. \& S. G., 20 B. \& S. G., and 22 B. \& S. G., according to the use for which they are intended. The most common size is 19 B. \& S. G. We also supply terminals and hangers. To determine the size supporting strand to use with these cables, consult tables page 39.

Specifications for Telephone Cables.

1. Conductors.

Each conductor shall be . 03589 inches in diameter, (19 B. \& S. G.,) and have a conductivity of 98 per cent. of that of pure soft copper.
2. Core.

The conductor shall be insulated, twisted in pairs, the length of the twist not to exceed three inches, and formed into a core arranged in reverse layers.

3. Sheath.

The core shall be enclosed in a pipe composed of lead and tin, the amount of the tin shall be not less than $2 \mathrm{\circ}$ 号 per cent. The pipe shall be formed around the core, and shall be free from holes or other defects, and of uniform thickness and composition.

4. Electrostatic Capactity.

The average electrostatic capacity shall not exceed .080 of a microfarad per mile, each wire being measured against all the rest and a sheath grounded; the electrostatic capacity of any wires so measured shall not exceed .085 of a microfarad per mile.

5. Insulation Resistance.

Each wire shall show an insulation of not less than 500 megohms per mile, at $60^{\circ} \mathrm{F}$., when laid, spliced and connected to terminal ready for use; each wire being measured against all the rest and sheath grounded.

6. Conductor Resistance.

Each conductor shall have a resistance of not more than 47 B. A. ohms, at $60^{\circ} \mathbf{F}$., for each mile of cable, after the cable is laid and connected to the terminals.

TELEPHONE CABLES.

Number pairs.	Outside diameters. Inches.	Weights, 1000 feet. Pounds.
1	${ }^{\frac{8}{18}}$	214
2	3/8	302
3	$1 / 2$	515
4	${ }_{18} 9$	629
5	5/8	747
6	$3{ }_{3}$	877
7	118	912
10	13	1214
12	$1{ }^{18}$	1375
15	1	1566
18	$1{ }_{16}^{16}$	1758
20	11/8	1940
25	$1{ }_{18}^{88}$	2332
30	$1{ }^{76}$	2748
35	11/2	2985
40	$1{ }_{18}{ }^{9}$	3176
45	15/8	3365
50	$13 / 4$	3678
55	11 눟	3867
60	17/8	4055
65	148	4241
70	2	4430
80	21/8	4804
90	21/4	5180
100	28/8	5505

TELEGRAPH CABLES.

Lead-encased for underground use.

THESE cables are made of either rubber, cotton or paper insulation. The sizes and weights are approximately correct for rubber and cotton insulation. Both sizes and weights are slightly reduced for paper insulation. In all cases the cables are lead-encased.

Specifications for Telegraph Cables.

1. Conductors.

Each conductor shall be . 064 inches in diameter, (14 B. \& S. G.,) and have a conductivity of 98 per cent. of that of pure copper.

2. Core.

The conductors shall be insulated to $\frac{5}{32}$ with cotton, and formed into a core arranged in reverse layers. This core shall be dried and saturated with approved insulating compound.

3. Sheath.

The core shall be enclosed in a pipe composed of lead and tin. The amount of tin shall not be less than 2.9 per cent. The pipe shall be formed around the core, and shall be free from holes or other defects, and of uniform thickness and composition.

4. Insulation Resistance.

The wire shall show an insulation of not less than 300 megohms per mile, at $60^{\circ} \mathrm{F}$., when laid, spliced and connected to terminals ready for use, each wire being measured against all the rest and the sheath grounded.

5. Conductor Resistance.

Each conductor shall have a resistance of not more than 28 International ohms, at $60^{\circ} \mathrm{F}$., for each mile of cable, after the cable is laid and connected up to the terminals.

TELEGRAPH CABLES.

	14 B. \& S. G. Insulated to $\frac{8}{32}$.		16 B. \& S. G. Insulated to $\frac{5}{32}$.		18 B. \& S. G. Insulated to $\frac{5}{32}$.	
1	8/8	308	8/8	299	8/8	291
2	$\frac{7}{18}$	438	$\frac{7}{10}$	421	$\frac{13}{2}$	356
3	1/2	573	1/2	546	$\frac{7}{16}$	421
4	5/8	810	${ }^{28}$	670	135	486
5	$8 / 4$	972	5/8	793	1/2	551
6	178	1132	18	946	$\frac{17}{3}$	616
7	7/8	1295	$8 / 4$	965	${ }^{\circ} \mathrm{I}$	681
10	$\frac{18}{68}$	1512	$\frac{13}{13}$	1155	8/8	820
12	$1 \frac{1}{18}$	1873	7/8	1327	3/4	978
15	$1 \frac{3}{18}$	2263	$\frac{18}{18}$	1518	$\frac{1}{13}$	1148
18	11/4	2523	$1{ }_{18}^{18}$	1880	7/8	1318
20	$1{ }^{5} 8$	2756	11/8	2076	$\frac{18}{18}$	1477
25	$1{ }_{18}^{78}$	3250	18	2496	1	1690
30	$1{ }^{18}$	3515	18/8	2768	$1{ }_{18}^{18}$	1903
35	$1 \frac{18}{18}$	3910	$1{ }_{18}^{76}$	8040	$1 \frac{18}{18}$	2116
40	13/4	4175	11/2	3312	11/4	2330
45	1119	4441	$1{ }^{\text {I }}$	3533	$1{ }_{3}{ }^{\text {g }}$	2471
50	$1 \frac{18}{8}$	4835	15/8	3755	$1{ }^{\frac{8}{88}}$	2628
55	2	5100	118	3978	18/8	2866
60	$2 \frac{1}{16}$	5365	18/4	4200	$17^{\prime} 6$	3104
65	21/8	5631	118	4422	$1 \frac{18}{5}$	3245
70	$2{ }^{\frac{3}{88}}$	5897	17/8	4644	11/2	3402
80	$2 \frac{88}{88}$	6408	2	5087	15/8	3798
90	$2 \frac{7}{18}$	6916	$2 \frac{18}{18}$	5402	$11 \frac{18}{8}$	4027
100	$2 \frac{18}{18}$	7375	$21 / 8$	5720	$13 / 4$	4275

AERIAL CABLES.

THESE cables are made from double-coated rubber wire, taped. After standing, the cable is doubletaped and covered with tarred jute, over which is placed a braid of heavy cotton saturated with Weatherproof compound. This outside covering protects the rubber from the action of the air and from mechanical injury. The separate wires are tested in water, and no wire is used which will not fully meet a water test. The result is a cable which will work under water as well as on a pole line, if there is no danger of mechanical injury. The ordinary size for telegraphic work is $14 \mathrm{~B} . \& \mathrm{~S}$. , insulated to $\frac{6}{52}$. A trace wire can be placed in each layer, if desired.

The size galvanized strand to support these cables may be found from the table page 39. Suppose the span is 130 feet and a 10 -conductor 14 B. \& S. G. Aerial cable is used, then from these tables it is seen a $\frac{1}{4}$-inch ordinary galvanized strand will support a cable weighing 423 pounds per 1000 feet, with a 130 -foot span.

Specifications for 14 B. \& S. Aerial Cable.

1. Conductors.

Each conductor shall be .064 inches in diameter, (14 B. \& S. G.,) and have a conductivity of 98 per cent. of that of pure copper.

2. Core.

The conductors shall be insulated to $\frac{6}{32}$ with rubber and tape, and formed into a core arranged in reverse layers.

3. Protective Covering.

The core shall be covered with two wraps of friction tape and one wrap of tarred jute. Over this there shall be a braid saturated with Weatherproof compound.
4. Insulation Resistance.

Each wire shall show an insulation resistance of not less than 300 megohms per mile, at $60^{\circ} \mathrm{F}$., after being immersed in water 24 hours. This test shall be made on the core after all the conductors are laid up, but before the outside coverings are put on.

5. Conductor Resistance.

Each conductor shall have a resistance of not more than 28 International ohms, at $60^{\circ} \mathrm{F}$., for each mile of cable.

AERIAL CABLES.

Rubber insulation.

	14 B. \& S. G. Insulated to $\frac{6}{32}$.		16 B. \& S. G. Insulated to ${ }^{\frac{5}{3}}$.		18 B. \& S. G. Insulated to 吉.	
2	$8 / 8$	102	8/8	92	8/8	82
3	1/2	149	$\frac{7}{18}$	126	$\frac{13}{3}$	104
4	${ }^{2} 8$	183	3/2	155	${ }_{18}$	127
5	$\frac{1}{15}$	226	8/8	193	1/2	151
6	$3 / 4$	260	113	222	$\frac{9}{16}$	175
7	$\frac{18}{88}$	297	3/4	251	5/8	200
10	$1{ }^{1}$	401	7/8	335	12	256
12	1	465	18	393	$8 / 4$	296
15	$11 / 8$	563	1	468	13	355
18	$1{ }_{18}{ }^{3}$	651	$1{ }_{18}^{18}$	541	7/8	413
20	11/4	714	11/8	593	${ }^{\frac{29}{3}}$	452
25	13/8	863	$1{ }^{3} 8$	708	$\frac{18}{18}$	541
30	$1{ }^{17}{ }^{7}$	1008	11/4	824	1	633
35	$11 / 2$	1147	18	938	$1{ }^{18}$	723
40	$1{ }^{18}$	1268	18/8	1053	11/8	813
45	15/8	1431	11/2	1182	$1{ }^{188}$	903
50	$13 / 4$	1577	15/8	1311	11/4	994

SUBMARINE CABLES.

	Outside diameters.	Armor wires.		Total weights. Pounds.	
		Number of wires.	Numbers, B. W. G.	1000 feet.	Mile.
1	7/8	12	8	1250	6600
2	1	15	8	1722	9092
3	11/8	14	6	2363	12477
4	$1 \frac{18}{18}$	16	6	2794	14752
5	$1 \frac{5}{16}$	16	6	2968	15671
6	11/2	16	4	3822	20180
7	11/2	16	4	3972	20972
10	17/8	18	3	5404	28533

The core consists of $7 \times 22 \mathrm{~B} . \& \mathrm{~S}$. tinned copper wires, insulated with rubber to $\frac{8}{32}$ of an inch, laid up with proper jute bedding.

We are prepared to furnish telegraph cables with gutta-percha insulation. This is the best insulation for submarine work, and its reliability and durability more than make up the difference in cost between it and any other insulation.

We are prepared to furnish submarine cables of any description for use in electric lighting and street railway work.

No list of these cables can be made, owing to the varying conditions to be met.

THE COLUMBIA RAIL-BOND.

THE COLUMBIA BOND consists of three parts, two copper thimbles and the connecting copper rod. On each end of this copper rod is a truncated conehead with a fillet at the base. The inside of the thimble is tapered to fit the head on the bond, while the
 outside is slightly tapered in the opposite way.

In applying the bond, the cone-shaped heads are placed in the holes in the rail from one side and the thimbles are slipped over them from the other.
A portable hand-press is then applied, and the wedgeshaped head of the bond is forced into the thimble so that it is not possible to see the line separating the thimble and the head in a cross-section of the two.

The end of the head of the bond is expanded by a center-punch, held in position in the press.

When installed, owing to the pressure exerted between the head and the thimble, and also to the fact that they are of the same kind of metal, the two become one, both electrically and mechanically.

The contact of rail and bond is made by a wedge expanding the thimble against the hole in the rail, and, as the bond is wedged both ways, it cannot get loose.

For a 0000 B. \& S. G. or 000 B. \& S. G. bond, the holes in the rail should be $\frac{7}{8}$-inch, and for a 00 B . \& S. G. or a 0 B. \& S. G. bond, $\frac{5}{8}$-inch.

The total length of a bond is $3 \frac{1}{2}$ inches more than the distance from center to center of holes in rails. The total length of a bond should be 8 inches more than that of the splice plate.

University of California

 SOUTHERN REGIONAL LIBRARY FACILITY 405 Hilgard Avenue, Los Angeles, CA 90024-1388 Return this material to the library from which it was borrowed.| | |
| :---: | :---: |
| | |

PLEASE DO NOT REMOVE THIS BOOK CARD 引
University Research Library

[^0]: 1 kilogram per square millimeter $=1423$ pounds per square inch.
 pound per square inch $=.000703$ kilograms per square millimeter.

[^1]: 1. In the following specification the term silver voltameter means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed duriug the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.

 In employing the silver voltameter to measure currents of about one ampere, the following arrangements should be adopted:

 The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimeters in diameter and from 4 to 5 centimeters in depth.

 The anode should be a plate of pure silver, some 30 square centimeters in area and 2 or 3 milimeters in thickness.

 This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling onto the kathode, the anode should be wrapped around with pure filter paper, secured at the back with sealing wax.

 The liquid should consist of a neutral solution of pure silver nitrate, containlng about 15 parts by welght of the nitrate to 85 parts of water.

 The resistance of the voltameter changes somewhat as the current

[^2]: passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms.
 2. A committee, consisting of Messrs. Helmholtz, Ayrton and Carhart, was appointed to prepare specifications for the Clark's cell. Their report has not yet been received.

[^3]: RuLs.-To find strain in pounds on wire of given span and deflection, muitiply numbers in column answering to span and

